Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome sequence of stable Campylobacter strain deciphered

17.09.2007
Scientists of the Institute of Food Research and their collaborators at the veterinary pharmaceutical company Intervet have deciphered and published the complete genome sequence of a strain of Campylobacter jejuni.

The food-poisoning bacterium C. jejuni is one of the major causes of gastroenteritis in humans, causing diarrhoea, stomach cramps and in rare cases a nervous condition called Guillain-Barré syndrome. Humans are commonly infected by eating undercooked poultry meat, which is contaminated during processing of the chickens. Surprisingly, the Campylobacter bacterium is commonly carried in the gut of birds without causing disease in the birds.

Like many bacteria, C. jejuni is able to avoid our body’s defences by altering the nature and content of its surface. These alterations are achieved by having regions of the bacterial chromosome that are able to make small random variations, resulting in different surface structures.

Genomic variability has been a problem for researchers investigating C. jejuni, since it potentially also causes differences between laboratories and even between experiments. In a project funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Intervet, the Campylobacter group at IFR has determined and analysed the complete genome sequence of Campylobacter jejuni strain 81116 (also known as NCTC11828). This strain was selected because of its previously reported genomic stability over time.

... more about:
»Campylobacter »jejuni »sequence

The genome sequence reported by IFR and Intervet is 1,628,114 bases in length and notable for having fewer of the variable regions than the previously reported C. jejuni sequences. Strain 81116 is widely studied as it is amenable to genetic alterations, and grows well in poultry allowing this important natural reservoir to be studied. Thus the reported sequence will provide useful information for Campylobacter researchers worldwide, and is predicted to be a valuable resource for the research community.

Campylobacter research at IFR
Campylobacter research at IFR focuses on understanding the molecular processes involved in Campylobacter infections. State-of-the art techniques are used or developed for the analysis of virulence gene regulation and bacterial responses to stresses encountered during infection of avian and mammalian hosts or during survival in the environment. The aim is to provide an integrated, holistic approach to the investigation of Campylobacter biology and pathogenesis of infection, by combining both the study of Campylobacter physiology and genetics.

Zoe Dunford | alfa
Further information:
http://www.ifr.ac.uk/

Further reports about: Campylobacter jejuni sequence

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>