Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT IDs binocular vision gene

14.09.2007
Research could lead to treatments for some visual disorders

In work that could lead to new treatments for sensory disorders in which people experience the strange phenomena of seeing better with one eye covered, MIT researchers report that they have identified the gene responsible for binocular vision.

Unlike horses and eagles, whose eyes on the sides of their heads provide two different scenes, humans see a single, in-depth view. Now researchers from the Picower Institute for Learning and Memory at MIT have identified the gene responsible for melding images from two eyes into one useful picture in the brain.

The work, which appeared in the Sept. 4 issue of the Public Library of Science (PloS) Biology and in the journal Cerebral Cortex, shows that a novel gene is necessary for binocular vision.

... more about:
»Binocular »Ten_m3 »Visual »projection

"There are other instances in the brain where two different inputs have to be properly aligned and matched-such as auditory and visual projections to the midbrain that enable us to orient to sound," said lead author Mriganka Sur, Sherman Fairchild Professor of Neuroscience at the Picower Institute and head of the Department of Brain and Cognitive Sciences at MIT. "This is the first study to pinpoint a gene with this kind of job."

Two points of view
Binocular vision allows us to perceive depth and carry out detailed visual processing. The images projected by each eye are aligned and matched up in brain regions called the visual thalamus and cortex.

The MIT researchers discovered that the genes Ten_m3 and Bcl6 have a key role in the early development of brain pathways for vision and touch. Ten_m3 appears to be critical for the brain to make sense of the two disparate images from each eye.

In mice that had the Ten_m3 gene knocked out, projections from their two eyes were mismatched in their brains. Because each eye's projection suppresses the other, the mice were blind, even though their eyes worked normally.

Remarkably, the researchers found that when the output of one eye was blocked at a molecular level, the knockout mice could see again. With one eye's conflicting input shut down, the other eye was able to function, though only with monocular vision.

"This is an amazing instance of 'gain of function' that proves immediately that the gene is directly responsible for creating matched projections from the two eyes," Sur said.

Human disorders in which the Ten_m family of genes is affected are often accompanied by visual deficits. "There are reports of human visual conditions in which simply closing one eye allows a person to see much better," Sur said. "We believe that genes such as Ten_m3 are at the heart of these disorders."

Co-authors include Catherine A. Learney, former MIT postdoctoral associate now at the University of Sydney; Atomu Sawatari, Kelly A. Glendining, Sam Merlin, Paul Lattouf and Natasha Demel of the University of Sydney; MIT affiliates Gabriel Kreiman, Kuan H. Wang and Ning-Dong Kang; Reinhard Fassler and Xiaohong Zhou of the Max Planck Institute for Biochemistry in Germany; and Susumu Tonegawa, Picower Professor of Biology and Neuroscience at MIT.

This work was supported by the National Institutes of Health, the Simons Foundation and Australia's National Health and Medical Research Council.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Binocular Ten_m3 Visual projection

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>