Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT IDs binocular vision gene

14.09.2007
Research could lead to treatments for some visual disorders

In work that could lead to new treatments for sensory disorders in which people experience the strange phenomena of seeing better with one eye covered, MIT researchers report that they have identified the gene responsible for binocular vision.

Unlike horses and eagles, whose eyes on the sides of their heads provide two different scenes, humans see a single, in-depth view. Now researchers from the Picower Institute for Learning and Memory at MIT have identified the gene responsible for melding images from two eyes into one useful picture in the brain.

The work, which appeared in the Sept. 4 issue of the Public Library of Science (PloS) Biology and in the journal Cerebral Cortex, shows that a novel gene is necessary for binocular vision.

... more about:
»Binocular »Ten_m3 »Visual »projection

"There are other instances in the brain where two different inputs have to be properly aligned and matched-such as auditory and visual projections to the midbrain that enable us to orient to sound," said lead author Mriganka Sur, Sherman Fairchild Professor of Neuroscience at the Picower Institute and head of the Department of Brain and Cognitive Sciences at MIT. "This is the first study to pinpoint a gene with this kind of job."

Two points of view
Binocular vision allows us to perceive depth and carry out detailed visual processing. The images projected by each eye are aligned and matched up in brain regions called the visual thalamus and cortex.

The MIT researchers discovered that the genes Ten_m3 and Bcl6 have a key role in the early development of brain pathways for vision and touch. Ten_m3 appears to be critical for the brain to make sense of the two disparate images from each eye.

In mice that had the Ten_m3 gene knocked out, projections from their two eyes were mismatched in their brains. Because each eye's projection suppresses the other, the mice were blind, even though their eyes worked normally.

Remarkably, the researchers found that when the output of one eye was blocked at a molecular level, the knockout mice could see again. With one eye's conflicting input shut down, the other eye was able to function, though only with monocular vision.

"This is an amazing instance of 'gain of function' that proves immediately that the gene is directly responsible for creating matched projections from the two eyes," Sur said.

Human disorders in which the Ten_m family of genes is affected are often accompanied by visual deficits. "There are reports of human visual conditions in which simply closing one eye allows a person to see much better," Sur said. "We believe that genes such as Ten_m3 are at the heart of these disorders."

Co-authors include Catherine A. Learney, former MIT postdoctoral associate now at the University of Sydney; Atomu Sawatari, Kelly A. Glendining, Sam Merlin, Paul Lattouf and Natasha Demel of the University of Sydney; MIT affiliates Gabriel Kreiman, Kuan H. Wang and Ning-Dong Kang; Reinhard Fassler and Xiaohong Zhou of the Max Planck Institute for Biochemistry in Germany; and Susumu Tonegawa, Picower Professor of Biology and Neuroscience at MIT.

This work was supported by the National Institutes of Health, the Simons Foundation and Australia's National Health and Medical Research Council.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Binocular Ten_m3 Visual projection

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>