Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how to isolate stem cells in womb tissue

13.09.2007
Scientists in Australia have found a way of identifying probable stem cells in the lining of women’s wombs. The finding opens up the possibility of using the stem cells for tissue engineering applications such as building up natural tissue to repair prolapsed pelvic floors.

Pelvic floor prolapse is a common condition, affecting over 50% of women after childbirth; around one in ten women have surgery and a third of these women require repeated operations to correct the problem.

In research published online today (Thursday 13 September) in the journal Human Reproduction [1], Dr Caroline Gargett describes how she and her PhD student, Ms Kjiana Schwab, identified two markers, CD146 and PDGF-Rß, which they were able to use to isolate mesenchymal stem-like cells (MSC) from endometrial tissue using a high speed cell sorting machine (fluorescence activated cell sorting – FACS). Only 1.5% of the endometrial cells sorted in this way expressed both markers and, therefore could be MSC.

They then investigated the properties of the MSC to discover whether they really were stem cells, capable of differentiating into a variety of different cell types. They found the cells were able to produce clones to form colonies of new cells at a rate that was 15 times greater than produced by the other endometrial cells. Furthermore, the MSC were able to differentiate into fat, bone, cartilage and smooth muscle cells in the culture dish. The MSC also appeared to be located around blood vessels in the endometrium (perivascular region).

Dr Gargett, a senior scientist at the Centre for Women’s Health Research, Monash Institute of Medical Research, Monash University, Victoria, Australia, explained: “Colony-forming ability is a property of adult stem cells, as is the ability to differentiate into different cell types. The fact that the cells expressing the two markers were located in the perivascular region strengthens our case that we have isolated mesenchymal stem cells, because mesenchymal stem cells from bone marrow and fat are found around blood vessels too. It also gives us clues as to how they might function in repairing and regenerating new endometrium each month.”

This is the first time that researchers have been able to use markers to isolate MSC from the endometrium and also the first study to show that the properties of these cells mean they are highly likely to be stem cells.

Dr Gargett said: “We had previously detected that MSC were present in the human endometrium but we were unable to isolate the MSC, which was a big drawback in studying their properties. The major finding of this study was the identification of two markers which enabled the prospective isolation of MSC-like cells from human endometrial tissue. This allows us to characterise endometrial MSC so we can understand their molecular and cellular properties better, compare them to MSC from other sources, such as bone marrow and fat, use them for tissue engineering applications, such as making constructs with biological scaffolds for pelvic floor prolapse surgery, and find where they are located in endometrium (i.e. around blood vessels); this gives us a clue as to how they might function in growing new endometrium each menstrual cycle and how they may have a role in gynaecological diseases such as endometriosis.”

The human endometrium is the only adult tissue that contains a substantial amount of the connective tissue framework (called stroma) that regularly regenerates under normal conditions when a woman menstruates. Because of its regenerative properties, Dr Gargett believed that it might contain MSC that were responsible for the monthly regeneration of the stroma and related blood vessels, and which could be an easily available source of MSC for stem cell therapy. However, until she identified CD146 and PDGF-Rß as MSC markers, there were no known markers and therefore no way of isolating the endometrial MSC.

Her research, using tissue obtained from women aged between 31-49 who were having hysterectomies, indicates that the MSC are probably located mainly in the basalis layer of the endometrium, which is the layer that is not shed during a woman’s period. “We think that is where the MSC should be if they are responsible for producing the functionalis layer, which grows each month,” said Dr Gargett.

This means that, although it might be possible to collect MSC from menstrual blood, the most likely method of collection would be curettage or biopsy. “This would not be any more invasive than collecting MSC from bone marrow or surgical removal (biopsy) of fat tissue,” said Dr Gargett. “MSC could also be collected from postmenopausal women, whose endometrium is very thin. If these women are given oestrogen replacement therapy for a very short time (a week or two) their endometrium will grow to the thickness of a reproductive age woman and the MSC could be collected without harm to the woman.”

Dr Gargett believes that initial applications for endometrial MSC would be to use them on the women that they had been retrieved from (rather than on other people) for gynaecological purposes such as pelvic floor prolapse. “Pelvic floor prolapse is a common problem that significantly impacts the lives of many women and they find it embarrassing to talk about – it is a hidden disorder in need of an innovative therapy,” she explained.

“Clinicians have been using a synthetic mesh as a reinforcement material to try and reduce the high rate of recurrence of this condition. While these meshes are often successful, a significant number of complications arise due to erosion or rejection of the foreign material. Increasingly clinicians have been trying biological scaffold material, but this often fails as it lacks cells and the body breaks it down faster than the body’s cells can infiltrate and strengthen the material. We believe that using a combination of biological scaffold and a woman’s own MSC might provide a solution that would ensure a longer lasting firm natural tissue that would be a superior support for the prolapsed uterus.

“We also believe that the identification of the MSC in human endometrium gives us the opportunity to investigate their possible role in the development and pathogenesis of common gynaecological disorders associated with abnormal endometrial growth, such as endometriosis and adenomyosis.” [2]

However, it will probably be at least ten years before applications from Dr Gargett’s findings will be used in the clinic. The next stages of the research include refining the technique by looking for further markers and possibly a single marker that could do the same job as two, and testing the possible tissue-engineering applications in animal models before they are used in humans.

Emma Mason | alfa
Further information:
http://www.oxfordjournals.org/eshre
http://www.oxfordjournals.org/eshre/press-release/freepdf/dem265.pdf

Further reports about: Endometrium Gargett HDL-cholesterol Isolate MSC believe endometrial prolapse properties

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>