Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiotic technology developed for microinjection of zebrafish embryos

12.09.2007
Funded by an NSERC Idea to Innovations grant and an Ontario Early Researcher Award, Prof. Yu Sun’s group, the Advanced Micro and Nanosystems Laboratory (http://amnl.mie.utoronto.ca) at the University of Toronto (U of T) recently developed a microrobotic technology for automated microinjection of zebrafish embryos.

Based on computer vision and motion control, the automated microrobotic system is capable of immobilizing a large number of zebrafish embryos into a regular pattern within seconds and injecting 15 embryos (chorion unremoved) per minute with a success rate, survival rate, and phenotypic rate all close to 100%. The system and performance were reported in the journal PLoS ONE in an article entitled, “A Fully Automated Robotic System for Microinjection of Zebrafish Embryos.”

Zebrafish is a model organism widely used in life sciences. High-speed injection of zebrafish embryos is important for screening genes in genetics and drug molecules in drug discovery. The automated microrobotic system proves itself as a reliable tool for determining gene functions and more generally, for facilitating large-scale molecule screening.

The technology was licensed to Marksman Cellject Inc. (http://www.marksman-cellject.com) for commercialization. Marksman Cellject Inc. is a start-up biotechnology company created by The Innovations Group (TIG) (http://www.innovations.utoronto.ca).

... more about:
»Technology »developed »embryos »zebrafish

Collaborating with the Toronto Centre for Advanced Reproductive Technology, a fertility clinic (http://www.tcartonline.com), Marksman Cellject Inc. has received an Ontario Centres of Excellence grant to extend the zebrafish injection technology to mouse/human oocyte/embryo injection for in-vitro fertilization applications.

TIG is part of the Office of Research at U of T with the mandate of commercializing discoveries developed by its researchers and healthcare partners in the areas of Physical Sciences, Information Technology and Life Science for society’s benefit. Among TIG’s other recent start-ups are Greencore Composites (http://www.greencorenfc.com), Cast Connex (http://www.castconnex.com), Opalux (http://www.opalux.com), and Sketch2 (press release - http://www.theglobeandmail.com/servlet/story/LAC.20070515.SRINNO15/TPStory/?query=innovation).

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000862

Further reports about: Technology developed embryos zebrafish

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>