Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiotic technology developed for microinjection of zebrafish embryos

12.09.2007
Funded by an NSERC Idea to Innovations grant and an Ontario Early Researcher Award, Prof. Yu Sun’s group, the Advanced Micro and Nanosystems Laboratory (http://amnl.mie.utoronto.ca) at the University of Toronto (U of T) recently developed a microrobotic technology for automated microinjection of zebrafish embryos.

Based on computer vision and motion control, the automated microrobotic system is capable of immobilizing a large number of zebrafish embryos into a regular pattern within seconds and injecting 15 embryos (chorion unremoved) per minute with a success rate, survival rate, and phenotypic rate all close to 100%. The system and performance were reported in the journal PLoS ONE in an article entitled, “A Fully Automated Robotic System for Microinjection of Zebrafish Embryos.”

Zebrafish is a model organism widely used in life sciences. High-speed injection of zebrafish embryos is important for screening genes in genetics and drug molecules in drug discovery. The automated microrobotic system proves itself as a reliable tool for determining gene functions and more generally, for facilitating large-scale molecule screening.

The technology was licensed to Marksman Cellject Inc. (http://www.marksman-cellject.com) for commercialization. Marksman Cellject Inc. is a start-up biotechnology company created by The Innovations Group (TIG) (http://www.innovations.utoronto.ca).

... more about:
»Technology »developed »embryos »zebrafish

Collaborating with the Toronto Centre for Advanced Reproductive Technology, a fertility clinic (http://www.tcartonline.com), Marksman Cellject Inc. has received an Ontario Centres of Excellence grant to extend the zebrafish injection technology to mouse/human oocyte/embryo injection for in-vitro fertilization applications.

TIG is part of the Office of Research at U of T with the mandate of commercializing discoveries developed by its researchers and healthcare partners in the areas of Physical Sciences, Information Technology and Life Science for society’s benefit. Among TIG’s other recent start-ups are Greencore Composites (http://www.greencorenfc.com), Cast Connex (http://www.castconnex.com), Opalux (http://www.opalux.com), and Sketch2 (press release - http://www.theglobeandmail.com/servlet/story/LAC.20070515.SRINNO15/TPStory/?query=innovation).

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000862

Further reports about: Technology developed embryos zebrafish

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>