Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiotic technology developed for microinjection of zebrafish embryos

12.09.2007
Funded by an NSERC Idea to Innovations grant and an Ontario Early Researcher Award, Prof. Yu Sun’s group, the Advanced Micro and Nanosystems Laboratory (http://amnl.mie.utoronto.ca) at the University of Toronto (U of T) recently developed a microrobotic technology for automated microinjection of zebrafish embryos.

Based on computer vision and motion control, the automated microrobotic system is capable of immobilizing a large number of zebrafish embryos into a regular pattern within seconds and injecting 15 embryos (chorion unremoved) per minute with a success rate, survival rate, and phenotypic rate all close to 100%. The system and performance were reported in the journal PLoS ONE in an article entitled, “A Fully Automated Robotic System for Microinjection of Zebrafish Embryos.”

Zebrafish is a model organism widely used in life sciences. High-speed injection of zebrafish embryos is important for screening genes in genetics and drug molecules in drug discovery. The automated microrobotic system proves itself as a reliable tool for determining gene functions and more generally, for facilitating large-scale molecule screening.

The technology was licensed to Marksman Cellject Inc. (http://www.marksman-cellject.com) for commercialization. Marksman Cellject Inc. is a start-up biotechnology company created by The Innovations Group (TIG) (http://www.innovations.utoronto.ca).

... more about:
»Technology »developed »embryos »zebrafish

Collaborating with the Toronto Centre for Advanced Reproductive Technology, a fertility clinic (http://www.tcartonline.com), Marksman Cellject Inc. has received an Ontario Centres of Excellence grant to extend the zebrafish injection technology to mouse/human oocyte/embryo injection for in-vitro fertilization applications.

TIG is part of the Office of Research at U of T with the mandate of commercializing discoveries developed by its researchers and healthcare partners in the areas of Physical Sciences, Information Technology and Life Science for society’s benefit. Among TIG’s other recent start-ups are Greencore Composites (http://www.greencorenfc.com), Cast Connex (http://www.castconnex.com), Opalux (http://www.opalux.com), and Sketch2 (press release - http://www.theglobeandmail.com/servlet/story/LAC.20070515.SRINNO15/TPStory/?query=innovation).

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000862

Further reports about: Technology developed embryos zebrafish

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>