Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rhythmic breathing adapts to external beat through “brain calculus”

12.09.2007
The same kind of learning that allows humans to get used to a subtle touch or persistent odor may also help human vital signs adapt to medical interventions such as mechanical ventilation.

The team, led by Chi-Sang Poon, a research scientist at the Harvard-MIT Division of Health Sciences and Technology (HST), suggests that this innate ability to adapt, called nonassociative learning, could be leveraged to design more effective and less costly artificial respirators.

In work described in the September 12 issue of PLoS ONE, the online, open-access journal from the Public Library of Science, Poon examined rats under mechanical ventilation to see how they applied different forms of nonassociative learning to adapt to the rhythm imposed by the respirator.

Existing designs of respirators do not consider the adaptive nature of breathing in their design. Some respirators ignore the patient’s natural rhythm and pump air in and out of the lungs on set intervals. Doctors often must sedate or paralyze patients to prevent them from fighting this unfamiliar rhythm. Other designs rely entirely on the patient to trigger the airflow. These systems, however, are costly and tend to be unreliable for weak patients such as newborns or those in critical care.

Poon’s experiment suggests, however, that if a doctor takes the patient’s natural breathing rhythm into account and sets the ventilator’s rhythm in that same range, the patient will adapt and synchronize with the ventilator. This new approach could minimize the need for induced sedation or paralysis.

“We have intrinsic nonassociative learning capabilities, called habituation and desensitization, that make up for changes in the spontaneous rhythm due to artificial lung inflation,” says Poon.

Nonassociative learning is a basic and familiar animal behavior. For instance, roses smell heady and intense at first, but minutes later they lose their affect due to habituation. “The body learns to tune it out if it’s not going to kill you,” says Poon.

In mammals, nonassociative learning also involves a secondary form of habituation, called desensitization. Desensitization engages memory to record the habituation and then apply it more generally using a different, “surrogate” pathway, says Poon.

A study of respiratory rhythms first exposed desensitization as a type of nonassociative learning. “If you take a deep breath,” says Poon, filling his lungs, “the Hering-Breuer reflex tells you not to breathe in anymore. It’s time to relax and expire.” But if a mechanical respirator is keeping a patient’s lungs artificially inflated with continual air pressure, a common therapy for patients with sleep apnea or in critical care to keep their lungs and airways open, it is also preventing the patient from breathing out. Meanwhile, the brain is keeping the patient from inhaling. The result of this deadlock is respiratory arrest.

After a moment, however, habituation and desensitization kick in. The vagus nerve, which detects when the lungs are full, habituates to the full signal. At the same time, says Poon, the pneumotaxic center of the pons, the region of the brain that controls rhythmic breathing, counterbalances the Hering-Breuer reflex by “zeroing out” its relevant neural receptors. As a result, breathing resumes and begins to synchronize with the imposed rhythm of the respirator.

In tests of rats under artificial respiration, Poon found that, if using a suitable rhythm, rats adapted to the mechanical ventilation. Severing the vagus nerve, the nerve supporting habituation, eliminated their ability to adapt. Lesions in the pons, the region supporting desensitization, impaired adaptation.

Poon also found that this learning capability enabled mice to adapt to an artificial rhythm even when the mechanical respirators applied constant air pressure. The rats effectively “tuned out” this extra pressure, filtering it out as background noise.

This filter, according to Poon, is part of a “brain calculus” in which different brain circuits employ integration and differentiation—types of mathematical calculations—to process and filter information. Poon is currently working on a project to map the neural circuits responsible for the calculus involved in habituation and desensitization.

Though nonassociative learning is familiar and commonly applied to smelling roses and adjusting to sunlight after emerging from a dark movie theater, it is not usually applied in a clinical scenario. Because of their focus on stabilizing patients, clinicians often discount the power of learning. "Many ventilators are designed as if the patient were never in the equation,” says Poon. “But it turns out, our vital functions can learn to adapt in order to survive.”

This work was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000865

Further reports about: Applied Habituation Poon artificial desensitization nonassociative respirator rhythm

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>