Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Mechanism Discovered for DNA Recombination and Repair

12.09.2007
A biochemistry research team led by Dr. Andrew H.-J. Wang and Dr. Ting-Fang Wang at the Institute of Biological Chemistry, Academia Sinica(IBCAS), has discovered that the RecA family recombinases function as a new type of rotary motor proteins to repair DNA damages.

The team has recently published two structural biology articles related to RecA family recombinases. One paper is to be published in the online, open-access journal PLoS ONE on September 12, 2007 and the other has been already published in the Nucleic Acids Research on Feb. 28, 2007.

Homologous recombination (HR) is a mechanism that repairs damaged DNA with perfect accuracy, it utilizes the homologous sequence from a partner DNA as a template. This process involves the bringing together of 2 DNA molecules, a search for homologous sequences, and exchange of DNA strands.

RecA family proteins are the central recombinases for HR. The family includes prokaryotic RecA, archaeal RadA, and eukaryotic Rad51 and Dmc1. They have important roles in cell proliferation, genome maintenance, and genetic diversity, particularly in higher eukaryotes. For example, Rad51-deficient vertebrate cells accumulate chromosomal breaks before death. Rad51 and its meiosis-specific homolog, Dmc1, are also indispensable for meiosis, a specialized cell cycle for production of gametes. Mammalian Rad51 and Dmc1 proteins are known to interact with tumor suppressor proteins such as BRCA2.

... more about:
»ATP »DNA »Filament »RadA »RecA »helical »homolog

Since scientists discovered RecA family proteins, it has been assumed that RecA (and other homologs) forms only 61 right-handed filaments (six protein monomers per helical turn), and then hydrolyzes ATP to promote HR and recombinational DNA repair. Whereas a controversial puzzle came out, how the energy of ATP facilitating DNA rotation during the strand exchange reaction.

By X-ray crystallography and atomic force microscopy approaches, Dr. Wangs’ team provided the answer. They reported that archaeal Sulfolobus solfataricus RadA proteins can also self-polymerize into a 31 right-handed filament with 3 monomers per helical turn (reported in PLoS ONE) and a 43 right-handed helical filament with 4 monomers per helical turn (reported in Nucleic Acids Research).

Additional biophysical and biochemical analyses revealed that RecA family proteins may couple ATP binding and hydrolysis to the DNA strand exchange reaction in a manner that promotes clockwise axial rotation of nucleoprotein filaments. Specially, the 61 RadA helical filament undergoes clockwise axial rotation in 2 discrete 120° steps to the 31 extended right-handed filament and then to the 43 left-handed filament. As a result, all the DNA-binding motifs (denoted L1, L2 and HhH) in the RadA proteins move concurrently to mediate DNA binding, homology pairing, and strand exchange, respectively. Therefore, the energy of ATP is used to rotate not only DNA substrates but also the RecA family protein filaments.

This new model is in contrast to all current hypotheses, which overlooks the fact that RecA family proteins are flexible enough to form both right-handed and left-handed helical filaments. From this perspective, these researchers in Taiwan have opened a new avenue for understanding the molecular mechanisms of RecA family proteins.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000858

Further reports about: ATP DNA Filament RadA RecA helical homolog

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>