Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


260 Million-Year-Old Reptiles from Russia Possessed the First Modern Ears

The discovery of the first anatomically modern ear in a group of 260 million-year-old fossil reptiles significantly pushes back the date of the origin of an advanced sense of hearing, and suggests the first known adaptations to living in the dark.

In a new study published in PLoS ONE, Johannes Müller and Linda Tsuji, paleobiologists at the Natural History Museum of the Humboldt University in Berlin, Germany report that these fossil animals, found in deposits of Permian age near the Mezen River in central Russia, possessed all the anatomical features typical of a vertebrate with a surprisingly modern ear.

When vertebrates had conquered land and the ancestors of modern day mammals, reptiles, and birds first began to diversify, hearing was not of high importance. The first fully terrestrial land vertebrates were, in fact, largely deaf, and lacked any of the anatomical features that would indicate the possession of what is termed impedance-matching hearing - the mechanism by which modern land vertebrates are able to transmit airborne sounds into the inner ear by means of small bony connections.

The ability of modern animals to hear a wide range of frequencies, highly important for prey capture, escape, and communication, was long assumed to have only evolved shortly before the origin of dinosaurs, not much longer than 200 million years ago, and therefore comparatively late in vertebrate history.

... more about:
»Fossil »hear »hearing »reptiles »vertebrate

But these fossils demonstrate that this advanced ear was in existence much earlier than previously suggested. In these small reptiles the outside of the cheek was covered with a large eardrum, and a bone comparable to our own hearing ossicles connected this structure with the inner ear and the brain. Müller and Tsuji also examined the functional performance of this unique and unexpected auditory arrangement, and discovered that these little reptiles were able to hear at least as well as a modern lizard.

But why would these animals have possessed such an ear? “Of course this question cannot be answered with certainty”, explains Müller, “but when we compared these fossils with modern land vertebrates, we recognized that animals with an excellent sense of hearing such as cats, owls, or geckos, are all active at night or under low-light conditions.

And maybe this is what these Permian reptiles did too." Because the fossils from the Mezen River also possess comparatively large eyes, another typical feature of vertebrates living in the dark, these reptiles indeed might have been among the first land vertebrates to pursue a specifically nocturnal lifestyle. An adaptation of this kind would have been a significant step at this early stage of terrestrial evolution, as endothermic (cold-blooded) animals require the heat of the sun to maintain their body temperature.

The discovery of an ear comparable to modern-day standards in such ancient land vertebrates provides an entirely new piece of information about the earliest terrestrial ecosystems, which no longer seem to be as primitive as once assumed. Already by this time, there must have been intense pressure to exploit new ecological niches and to evolve new structures to gain an advantage over other species in an increasingly crowded world. At last, it was those pressures and evolutionary inventions that paved the way for our modern day environments.

Andrew Hyde | alfa
Further information:

Further reports about: Fossil hear hearing reptiles vertebrate

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>