Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

260 Million-Year-Old Reptiles from Russia Possessed the First Modern Ears

12.09.2007
The discovery of the first anatomically modern ear in a group of 260 million-year-old fossil reptiles significantly pushes back the date of the origin of an advanced sense of hearing, and suggests the first known adaptations to living in the dark.

In a new study published in PLoS ONE, Johannes Müller and Linda Tsuji, paleobiologists at the Natural History Museum of the Humboldt University in Berlin, Germany report that these fossil animals, found in deposits of Permian age near the Mezen River in central Russia, possessed all the anatomical features typical of a vertebrate with a surprisingly modern ear.

When vertebrates had conquered land and the ancestors of modern day mammals, reptiles, and birds first began to diversify, hearing was not of high importance. The first fully terrestrial land vertebrates were, in fact, largely deaf, and lacked any of the anatomical features that would indicate the possession of what is termed impedance-matching hearing - the mechanism by which modern land vertebrates are able to transmit airborne sounds into the inner ear by means of small bony connections.

The ability of modern animals to hear a wide range of frequencies, highly important for prey capture, escape, and communication, was long assumed to have only evolved shortly before the origin of dinosaurs, not much longer than 200 million years ago, and therefore comparatively late in vertebrate history.

... more about:
»Fossil »hear »hearing »reptiles »vertebrate

But these fossils demonstrate that this advanced ear was in existence much earlier than previously suggested. In these small reptiles the outside of the cheek was covered with a large eardrum, and a bone comparable to our own hearing ossicles connected this structure with the inner ear and the brain. Müller and Tsuji also examined the functional performance of this unique and unexpected auditory arrangement, and discovered that these little reptiles were able to hear at least as well as a modern lizard.

But why would these animals have possessed such an ear? “Of course this question cannot be answered with certainty”, explains Müller, “but when we compared these fossils with modern land vertebrates, we recognized that animals with an excellent sense of hearing such as cats, owls, or geckos, are all active at night or under low-light conditions.

And maybe this is what these Permian reptiles did too." Because the fossils from the Mezen River also possess comparatively large eyes, another typical feature of vertebrates living in the dark, these reptiles indeed might have been among the first land vertebrates to pursue a specifically nocturnal lifestyle. An adaptation of this kind would have been a significant step at this early stage of terrestrial evolution, as endothermic (cold-blooded) animals require the heat of the sun to maintain their body temperature.

The discovery of an ear comparable to modern-day standards in such ancient land vertebrates provides an entirely new piece of information about the earliest terrestrial ecosystems, which no longer seem to be as primitive as once assumed. Already by this time, there must have been intense pressure to exploit new ecological niches and to evolve new structures to gain an advantage over other species in an increasingly crowded world. At last, it was those pressures and evolutionary inventions that paved the way for our modern day environments.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000889

Further reports about: Fossil hear hearing reptiles vertebrate

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>