Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was ability to run early man’s Achilles heel?

12.09.2007
The earliest humans almost certainly walked upright on two legs but may have struggled to run at even half the speed of modern man, new research suggests.

The University of Manchester study – presented to the BA (British Association for the Advancement of Science) Festival of Science in York on Tuesday – proposes that if early humans lacked an Achilles tendon, as modern chimps and gorillas do, then their ability to run would have been severely compromised.

“Our research supports the belief that the earliest humans used efficient bipedal walking rather than chimp-like ‘Groucho’ walking,” said Dr Bill Sellers, who led the research in the University’s Faculty of Life Sciences.

“But if, as seems likely, early humans lacked an Achilles tendon then whilst their ability to walk would be largely unaffected our work suggests running effectiveness would be greatly reduced with top speeds halved and energy costs more than doubled.

... more about:
»Achilles »Fossil »Sellers »ancestor »tendon

“Efficient running would have been essential to allow our ancestors to move from a largely herbivorous diet to the much more familiar hunting activities associated with later humans. What we need to discover now is when in our evolution did we develop an Achilles tendon as knowing this will help unravel the mystery of our origins.”

Dr Sellers, who recently published research on the running speeds of five meat-eating dinosaurs, used the same computer software to generate a humanoid bipedal computer model using data from a hominid fossil skeleton called ‘Lucy’ and hominid footprints preserved in ash at Laetoli in Tanzania.

“The skeletons and footprints from some of the earliest members of the human lineage – the early hominids – provide the best clues we have to how we progressed down the pathway to modern human walking and running,” said Dr Sellers.

“We have borrowed techniques from other scientific disciplines - robotics, computer science and biomechanics - in an attempt to ‘reverse engineer’ fossil skeletons; we use what we know about skeletons and the muscles to build a computer model of the fossil species we are interested in.

“This model is a virtual robot where we can activate muscles and get it to move its legs in a physically realistic fashion; the tricky bit is getting it to actually walk or run without falling over.

“However, if we use big enough computers and let the model fall over enough times it is possible for the simulation to learn which muscles to fire and when in order to get the model to walk properly. Even better we can ask the computer to find ways of minimising fuel cost and maximising top speed since that is what we think animals have to do.”

Dr Sellers initially looked at walking and his models suggested that even as early as 3.5 million years ago our human ancestors were able to walk as efficiently as modern humans. His research also showed that they preferred to walk a little slower than we do but only because they were much smaller and had quite short legs.

The team also used the computer model to look at particular parts of the human locomotion system, including the Achilles tendon, which they showed acts like a big spring to store energy during running; when the tendon was removed from the model the top running speed was greatly reduced.

“We have only just started to look at running and so there are still plenty of questions to answer,” said Dr Sellers. “But whilst these very early fossils could walk well, our initial findings suggest that efficient running came about quite a bit later in the fossil record.

“How we evolved from our common ancestor with chimpanzees six million years ago is a fundamental question. Walking upright seems to be the very first thing that distinguishes our ancestors from other apes, so finding out about this should help us map the evolutionary pathway to modern humans.

“The next really interesting question is to look in more detail at running. It has been suggested that our ability to run for long distances took a lot longer to evolve than our ability to walk and that this is a defining feature of our very close relatives in our genus. Our techniques should let us get to the bottom of this question because it will let us measure the running abilities of our fossil ancestors directly.”

The research was funded by the Natural Environment Research Council (NERC).

Aeron Haworth | alfa
Further information:
http://www.ls.manchester.ac.uk/about/news/

Further reports about: Achilles Fossil Sellers ancestor tendon

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>