Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was ability to run early man’s Achilles heel?

12.09.2007
The earliest humans almost certainly walked upright on two legs but may have struggled to run at even half the speed of modern man, new research suggests.

The University of Manchester study – presented to the BA (British Association for the Advancement of Science) Festival of Science in York on Tuesday – proposes that if early humans lacked an Achilles tendon, as modern chimps and gorillas do, then their ability to run would have been severely compromised.

“Our research supports the belief that the earliest humans used efficient bipedal walking rather than chimp-like ‘Groucho’ walking,” said Dr Bill Sellers, who led the research in the University’s Faculty of Life Sciences.

“But if, as seems likely, early humans lacked an Achilles tendon then whilst their ability to walk would be largely unaffected our work suggests running effectiveness would be greatly reduced with top speeds halved and energy costs more than doubled.

... more about:
»Achilles »Fossil »Sellers »ancestor »tendon

“Efficient running would have been essential to allow our ancestors to move from a largely herbivorous diet to the much more familiar hunting activities associated with later humans. What we need to discover now is when in our evolution did we develop an Achilles tendon as knowing this will help unravel the mystery of our origins.”

Dr Sellers, who recently published research on the running speeds of five meat-eating dinosaurs, used the same computer software to generate a humanoid bipedal computer model using data from a hominid fossil skeleton called ‘Lucy’ and hominid footprints preserved in ash at Laetoli in Tanzania.

“The skeletons and footprints from some of the earliest members of the human lineage – the early hominids – provide the best clues we have to how we progressed down the pathway to modern human walking and running,” said Dr Sellers.

“We have borrowed techniques from other scientific disciplines - robotics, computer science and biomechanics - in an attempt to ‘reverse engineer’ fossil skeletons; we use what we know about skeletons and the muscles to build a computer model of the fossil species we are interested in.

“This model is a virtual robot where we can activate muscles and get it to move its legs in a physically realistic fashion; the tricky bit is getting it to actually walk or run without falling over.

“However, if we use big enough computers and let the model fall over enough times it is possible for the simulation to learn which muscles to fire and when in order to get the model to walk properly. Even better we can ask the computer to find ways of minimising fuel cost and maximising top speed since that is what we think animals have to do.”

Dr Sellers initially looked at walking and his models suggested that even as early as 3.5 million years ago our human ancestors were able to walk as efficiently as modern humans. His research also showed that they preferred to walk a little slower than we do but only because they were much smaller and had quite short legs.

The team also used the computer model to look at particular parts of the human locomotion system, including the Achilles tendon, which they showed acts like a big spring to store energy during running; when the tendon was removed from the model the top running speed was greatly reduced.

“We have only just started to look at running and so there are still plenty of questions to answer,” said Dr Sellers. “But whilst these very early fossils could walk well, our initial findings suggest that efficient running came about quite a bit later in the fossil record.

“How we evolved from our common ancestor with chimpanzees six million years ago is a fundamental question. Walking upright seems to be the very first thing that distinguishes our ancestors from other apes, so finding out about this should help us map the evolutionary pathway to modern humans.

“The next really interesting question is to look in more detail at running. It has been suggested that our ability to run for long distances took a lot longer to evolve than our ability to walk and that this is a defining feature of our very close relatives in our genus. Our techniques should let us get to the bottom of this question because it will let us measure the running abilities of our fossil ancestors directly.”

The research was funded by the Natural Environment Research Council (NERC).

Aeron Haworth | alfa
Further information:
http://www.ls.manchester.ac.uk/about/news/

Further reports about: Achilles Fossil Sellers ancestor tendon

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>