Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was ability to run early man’s Achilles heel?

12.09.2007
The earliest humans almost certainly walked upright on two legs but may have struggled to run at even half the speed of modern man, new research suggests.

The University of Manchester study – presented to the BA (British Association for the Advancement of Science) Festival of Science in York on Tuesday – proposes that if early humans lacked an Achilles tendon, as modern chimps and gorillas do, then their ability to run would have been severely compromised.

“Our research supports the belief that the earliest humans used efficient bipedal walking rather than chimp-like ‘Groucho’ walking,” said Dr Bill Sellers, who led the research in the University’s Faculty of Life Sciences.

“But if, as seems likely, early humans lacked an Achilles tendon then whilst their ability to walk would be largely unaffected our work suggests running effectiveness would be greatly reduced with top speeds halved and energy costs more than doubled.

... more about:
»Achilles »Fossil »Sellers »ancestor »tendon

“Efficient running would have been essential to allow our ancestors to move from a largely herbivorous diet to the much more familiar hunting activities associated with later humans. What we need to discover now is when in our evolution did we develop an Achilles tendon as knowing this will help unravel the mystery of our origins.”

Dr Sellers, who recently published research on the running speeds of five meat-eating dinosaurs, used the same computer software to generate a humanoid bipedal computer model using data from a hominid fossil skeleton called ‘Lucy’ and hominid footprints preserved in ash at Laetoli in Tanzania.

“The skeletons and footprints from some of the earliest members of the human lineage – the early hominids – provide the best clues we have to how we progressed down the pathway to modern human walking and running,” said Dr Sellers.

“We have borrowed techniques from other scientific disciplines - robotics, computer science and biomechanics - in an attempt to ‘reverse engineer’ fossil skeletons; we use what we know about skeletons and the muscles to build a computer model of the fossil species we are interested in.

“This model is a virtual robot where we can activate muscles and get it to move its legs in a physically realistic fashion; the tricky bit is getting it to actually walk or run without falling over.

“However, if we use big enough computers and let the model fall over enough times it is possible for the simulation to learn which muscles to fire and when in order to get the model to walk properly. Even better we can ask the computer to find ways of minimising fuel cost and maximising top speed since that is what we think animals have to do.”

Dr Sellers initially looked at walking and his models suggested that even as early as 3.5 million years ago our human ancestors were able to walk as efficiently as modern humans. His research also showed that they preferred to walk a little slower than we do but only because they were much smaller and had quite short legs.

The team also used the computer model to look at particular parts of the human locomotion system, including the Achilles tendon, which they showed acts like a big spring to store energy during running; when the tendon was removed from the model the top running speed was greatly reduced.

“We have only just started to look at running and so there are still plenty of questions to answer,” said Dr Sellers. “But whilst these very early fossils could walk well, our initial findings suggest that efficient running came about quite a bit later in the fossil record.

“How we evolved from our common ancestor with chimpanzees six million years ago is a fundamental question. Walking upright seems to be the very first thing that distinguishes our ancestors from other apes, so finding out about this should help us map the evolutionary pathway to modern humans.

“The next really interesting question is to look in more detail at running. It has been suggested that our ability to run for long distances took a lot longer to evolve than our ability to walk and that this is a defining feature of our very close relatives in our genus. Our techniques should let us get to the bottom of this question because it will let us measure the running abilities of our fossil ancestors directly.”

The research was funded by the Natural Environment Research Council (NERC).

Aeron Haworth | alfa
Further information:
http://www.ls.manchester.ac.uk/about/news/

Further reports about: Achilles Fossil Sellers ancestor tendon

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>