Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was ability to run early man’s Achilles heel?

12.09.2007
The earliest humans almost certainly walked upright on two legs but may have struggled to run at even half the speed of modern man, new research suggests.

The University of Manchester study – presented to the BA (British Association for the Advancement of Science) Festival of Science in York on Tuesday – proposes that if early humans lacked an Achilles tendon, as modern chimps and gorillas do, then their ability to run would have been severely compromised.

“Our research supports the belief that the earliest humans used efficient bipedal walking rather than chimp-like ‘Groucho’ walking,” said Dr Bill Sellers, who led the research in the University’s Faculty of Life Sciences.

“But if, as seems likely, early humans lacked an Achilles tendon then whilst their ability to walk would be largely unaffected our work suggests running effectiveness would be greatly reduced with top speeds halved and energy costs more than doubled.

... more about:
»Achilles »Fossil »Sellers »ancestor »tendon

“Efficient running would have been essential to allow our ancestors to move from a largely herbivorous diet to the much more familiar hunting activities associated with later humans. What we need to discover now is when in our evolution did we develop an Achilles tendon as knowing this will help unravel the mystery of our origins.”

Dr Sellers, who recently published research on the running speeds of five meat-eating dinosaurs, used the same computer software to generate a humanoid bipedal computer model using data from a hominid fossil skeleton called ‘Lucy’ and hominid footprints preserved in ash at Laetoli in Tanzania.

“The skeletons and footprints from some of the earliest members of the human lineage – the early hominids – provide the best clues we have to how we progressed down the pathway to modern human walking and running,” said Dr Sellers.

“We have borrowed techniques from other scientific disciplines - robotics, computer science and biomechanics - in an attempt to ‘reverse engineer’ fossil skeletons; we use what we know about skeletons and the muscles to build a computer model of the fossil species we are interested in.

“This model is a virtual robot where we can activate muscles and get it to move its legs in a physically realistic fashion; the tricky bit is getting it to actually walk or run without falling over.

“However, if we use big enough computers and let the model fall over enough times it is possible for the simulation to learn which muscles to fire and when in order to get the model to walk properly. Even better we can ask the computer to find ways of minimising fuel cost and maximising top speed since that is what we think animals have to do.”

Dr Sellers initially looked at walking and his models suggested that even as early as 3.5 million years ago our human ancestors were able to walk as efficiently as modern humans. His research also showed that they preferred to walk a little slower than we do but only because they were much smaller and had quite short legs.

The team also used the computer model to look at particular parts of the human locomotion system, including the Achilles tendon, which they showed acts like a big spring to store energy during running; when the tendon was removed from the model the top running speed was greatly reduced.

“We have only just started to look at running and so there are still plenty of questions to answer,” said Dr Sellers. “But whilst these very early fossils could walk well, our initial findings suggest that efficient running came about quite a bit later in the fossil record.

“How we evolved from our common ancestor with chimpanzees six million years ago is a fundamental question. Walking upright seems to be the very first thing that distinguishes our ancestors from other apes, so finding out about this should help us map the evolutionary pathway to modern humans.

“The next really interesting question is to look in more detail at running. It has been suggested that our ability to run for long distances took a lot longer to evolve than our ability to walk and that this is a defining feature of our very close relatives in our genus. Our techniques should let us get to the bottom of this question because it will let us measure the running abilities of our fossil ancestors directly.”

The research was funded by the Natural Environment Research Council (NERC).

Aeron Haworth | alfa
Further information:
http://www.ls.manchester.ac.uk/about/news/

Further reports about: Achilles Fossil Sellers ancestor tendon

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>