Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How vitamin C stops the big 'C'

11.09.2007
Nearly 30 years after Nobel laureate Linus Pauling famously and controversially suggested that vitamin C supplements can prevent cancer, a team of Johns Hopkins scientists have shown that in mice at least, vitamin C - and potentially other antioxidants - can indeed inhibit the growth of some tumors ¯ just not in the manner suggested by years of investigation.

The conventional wisdom of how antioxidants such as vitamin C help prevent cancer growth is that they grab up volatile oxygen free radical molecules and prevent the damage they are known to do to our delicate DNA. The Hopkins study, led by Chi Dang, M.D., Ph.D., professor of medicine and oncology and Johns Hopkins Family Professor in Oncology Research, unexpectedly found that the antioxidants’ actual role may be to destabilize a tumor’s ability to grow under oxygen-starved conditions. Their work is detailed this week in Cancer Cell.

“The potential anticancer benefits of antioxidants have been the driving force for many clinical and preclinical studies,” says Dang. “By uncovering the mechanism behind antioxidants, we are now better suited to maximize their therapeutic use.”

“Once again, this work demonstrates the irreplaceable value of letting researchers follow their scientific noses wherever it leads them,” Dang adds.

... more about:
»DNA »Dang »HIF-1 »Vitamin »damage »free radicals

The authors do caution that while vitamin C is still essential for good health, this study is preliminary and people should not rush out and buy bulk supplies of antioxidants as a means of cancer prevention.

The Johns Hopkins investigators discovered the surprise antioxidant mechanism while looking at mice implanted with either human lymphoma (a blood cancer) or human liver cancer cells. Both of these cancers produce high levels of free radicals that can be suppressed by feeding the mice supplements of antioxidants, either vitamin C or N-acetylcysteine (NAC).

However, when the Hopkins team examined cancer cells from cancer-implanted mice not fed the antioxidants, they noticed the absence of any significant DNA damage. “Clearly, if DNA damage was not in play as a cause of the cancer, then whatever the antioxidants were doing to help was also not related to DNA damage,” says Ping Gao, Ph.D, lead author of the paper.

That conclusion led Gao and Dang to suspect that some other mechanism was involved, such as a protein known to be dependent on free radicals called HIF-1 (hypoxia-induced factor), which was discovered over a decade ago by Hopkins researcher and co-author Gregg Semenza, M.D., Ph.D., director of the Program in Vascular Cell Engineering. Indeed, they found that while this protein was abundant in untreated cancer cells taken from the mice, it disappeared in vitamin C-treated cells taken from similar animals.

“When a cell lacks oxygen, HIF-1 helps it compensate,” explains Dang. “HIF-1 helps an oxygen-starved cell convert sugar to energy without using oxygen and also initiates the construction of new blood vessels to bring in a fresh oxygen supply.”

Some rapidly growing tumors consume enough energy to easily suck out the available oxygen in their vicinity, making HIF-1 absolutely critical for their continued survival. But HIF-1 can only operate if it has a supply of free radicals. Antioxidants remove these free radicals and stop HIF-1, and the tumor, in its tracks.

The authors confirmed the importance of this “hypoxia protein” by creating cancer cells with a genetic variant of HIF-1 that did not require free radicals to be stable. In these cells, antioxidants no longer had any cancer-fighting power.

Nick Zagorski | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.cancercell.org/
http://www.hopkinsmedicine.org/hematology/faculty_staff/dang.html

Further reports about: DNA Dang HIF-1 Vitamin damage free radicals

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>