Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How vitamin C stops the big 'C'

11.09.2007
Nearly 30 years after Nobel laureate Linus Pauling famously and controversially suggested that vitamin C supplements can prevent cancer, a team of Johns Hopkins scientists have shown that in mice at least, vitamin C - and potentially other antioxidants - can indeed inhibit the growth of some tumors ¯ just not in the manner suggested by years of investigation.

The conventional wisdom of how antioxidants such as vitamin C help prevent cancer growth is that they grab up volatile oxygen free radical molecules and prevent the damage they are known to do to our delicate DNA. The Hopkins study, led by Chi Dang, M.D., Ph.D., professor of medicine and oncology and Johns Hopkins Family Professor in Oncology Research, unexpectedly found that the antioxidants’ actual role may be to destabilize a tumor’s ability to grow under oxygen-starved conditions. Their work is detailed this week in Cancer Cell.

“The potential anticancer benefits of antioxidants have been the driving force for many clinical and preclinical studies,” says Dang. “By uncovering the mechanism behind antioxidants, we are now better suited to maximize their therapeutic use.”

“Once again, this work demonstrates the irreplaceable value of letting researchers follow their scientific noses wherever it leads them,” Dang adds.

... more about:
»DNA »Dang »HIF-1 »Vitamin »damage »free radicals

The authors do caution that while vitamin C is still essential for good health, this study is preliminary and people should not rush out and buy bulk supplies of antioxidants as a means of cancer prevention.

The Johns Hopkins investigators discovered the surprise antioxidant mechanism while looking at mice implanted with either human lymphoma (a blood cancer) or human liver cancer cells. Both of these cancers produce high levels of free radicals that can be suppressed by feeding the mice supplements of antioxidants, either vitamin C or N-acetylcysteine (NAC).

However, when the Hopkins team examined cancer cells from cancer-implanted mice not fed the antioxidants, they noticed the absence of any significant DNA damage. “Clearly, if DNA damage was not in play as a cause of the cancer, then whatever the antioxidants were doing to help was also not related to DNA damage,” says Ping Gao, Ph.D, lead author of the paper.

That conclusion led Gao and Dang to suspect that some other mechanism was involved, such as a protein known to be dependent on free radicals called HIF-1 (hypoxia-induced factor), which was discovered over a decade ago by Hopkins researcher and co-author Gregg Semenza, M.D., Ph.D., director of the Program in Vascular Cell Engineering. Indeed, they found that while this protein was abundant in untreated cancer cells taken from the mice, it disappeared in vitamin C-treated cells taken from similar animals.

“When a cell lacks oxygen, HIF-1 helps it compensate,” explains Dang. “HIF-1 helps an oxygen-starved cell convert sugar to energy without using oxygen and also initiates the construction of new blood vessels to bring in a fresh oxygen supply.”

Some rapidly growing tumors consume enough energy to easily suck out the available oxygen in their vicinity, making HIF-1 absolutely critical for their continued survival. But HIF-1 can only operate if it has a supply of free radicals. Antioxidants remove these free radicals and stop HIF-1, and the tumor, in its tracks.

The authors confirmed the importance of this “hypoxia protein” by creating cancer cells with a genetic variant of HIF-1 that did not require free radicals to be stable. In these cells, antioxidants no longer had any cancer-fighting power.

Nick Zagorski | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.cancercell.org/
http://www.hopkinsmedicine.org/hematology/faculty_staff/dang.html

Further reports about: DNA Dang HIF-1 Vitamin damage free radicals

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>