Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory researchers identify signaling protein for multiple myeloma

11.09.2007
Findings may result in new therapeutic target

Researchers at Emory University’s Winship Cancer Institute are the first to discover a mechanism that plays a critical role in the multiple myeloma cell cycle and survival. Their research may result in identification of a new therapeutic target for treating multiple myeloma.

The results of the study appear in the September issue of Cancer Cell. Jing Chen, PhD, assistant professor of hematology and oncology at Emory Winship and a Georgia Cancer Coalition Distinguished Cancer Scholar, is senior author on the paper. Sumin Kang, PhD, a postdoctoral fellow at Emory Winship, is the paper's first author.

Multiple Myeloma is among the most common hematologic malignancies in patients over 65. About15 percent of multiple myeloma patients harbor a genetic abnormality called “t(4;14) chromosomal translocation” that causes over-expression of a tyrosine kinase called fibroblast growth factor receptor 3 (FGFR3).

... more about:
»FGFR3 »PhD »RSK2 »Signaling »downstream »identified »myeloma

Tyrosine kinases are molecules that act as biological switches inside cells, regulating processes including cell division and growth. Abnormal kinases have been identified as a driving force in many forms of cancer.

“We are interested in how FGFR3 mediates transforming signals,” says Dr. Chen. “We wanted to know which protein factors in cells are activated by FGFR3 and then transform normal cells to highly malignant cells. We identified Ribosomal S6 kinase 2 (RSK2), which is a protein factor that mediates signaling in cells as critical in downstream signaling of FGFR3 in myeloma cells.”

Dr. Chen and his colleagues are the first to discover a mechanism to “turn-on” RSK2 by FGFR3. FGFR3 impacts downstream proteins through phosphorylation at special “tyrosine” sites.

“We found that FGFR3 directly phosphorylates RSK2, which is a critical step in the process to activate (turn-on) RSK2,” says Dr. Chen.

The researchers observed that elimination of RSK2 proteins or shutting down RSK2 activity blocks FGFR3 transformation signaling in myeloma cells. This means FGFR3 requires RSK2 to transform normal cells.

“This is a beautiful model,” says Dr. Chen. “We are able to mark the connection between the oncogenic FGFR3 and its downstream protein kinase RSK2, which plays a critical role in regulation of cell cycle and survival. These findings extend our understanding of pathogenesis of multiple myeloma in a signaling basis.”

Collaborators on the project include Roberto Polakiewicz, PhD, and Ting-Lei Gu, PhD, both of Cell Signaling Technologies (CST), developers of the “PhosphoScan” technology, which enables investigators to identify hundreds to thousands of phosphorylated sequences and observe the global state of protein tyrosine phosphorylation in cells and tissues.

“Using this technology,” says Dr. Chen, “we identified RSK2 as a critical downstream signaling protein effector of FGFR3 in myeloma cells.” Other authors include researchers from the University of California at San Francisco, Harvard Medical School, Mayo Clinic and Novartis Pharma AG.

Dr. Chen and his colleagues also tested a drug called fmk that was designed by co-author Jack Taunton, PhD, at UCSF to specifically target RSK2 in treatment of human malignant myeloma cells from laboratory culture or primary samples from multiple myeloma patients, and saw that fmk effectively kills t(4;14) myeloma cells with abnormal over-expression of FGFR3.

“This study shows the potential utility of drugs that block the downstream effectors of mutant tyrosine kinases, and that these drugs are opening more doors to treating hematologic malignancies and cancers," explains Dr. Chen. In addition to the t(4;14) in multiple myeloma that is caused by abnormal over-expression of FGFR3, abnormality of FGFR3 has also been identified in human bladder and cervical cancers. The findings suggest, the authors write, that targeting RSK2 with RSK inhibitors such as fmk may be effective in treating t(4;14) multiple myeloma, as well as other diseases and cancers where mutant FGFR3 is the culprit.

Vincent Dollard | EurekAlert!
Further information:
http://www.emoryhealthcare.org
http://www.cancer.emory.edu

Further reports about: FGFR3 PhD RSK2 Signaling downstream identified myeloma

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>