Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory researchers identify signaling protein for multiple myeloma

11.09.2007
Findings may result in new therapeutic target

Researchers at Emory University’s Winship Cancer Institute are the first to discover a mechanism that plays a critical role in the multiple myeloma cell cycle and survival. Their research may result in identification of a new therapeutic target for treating multiple myeloma.

The results of the study appear in the September issue of Cancer Cell. Jing Chen, PhD, assistant professor of hematology and oncology at Emory Winship and a Georgia Cancer Coalition Distinguished Cancer Scholar, is senior author on the paper. Sumin Kang, PhD, a postdoctoral fellow at Emory Winship, is the paper's first author.

Multiple Myeloma is among the most common hematologic malignancies in patients over 65. About15 percent of multiple myeloma patients harbor a genetic abnormality called “t(4;14) chromosomal translocation” that causes over-expression of a tyrosine kinase called fibroblast growth factor receptor 3 (FGFR3).

... more about:
»FGFR3 »PhD »RSK2 »Signaling »downstream »identified »myeloma

Tyrosine kinases are molecules that act as biological switches inside cells, regulating processes including cell division and growth. Abnormal kinases have been identified as a driving force in many forms of cancer.

“We are interested in how FGFR3 mediates transforming signals,” says Dr. Chen. “We wanted to know which protein factors in cells are activated by FGFR3 and then transform normal cells to highly malignant cells. We identified Ribosomal S6 kinase 2 (RSK2), which is a protein factor that mediates signaling in cells as critical in downstream signaling of FGFR3 in myeloma cells.”

Dr. Chen and his colleagues are the first to discover a mechanism to “turn-on” RSK2 by FGFR3. FGFR3 impacts downstream proteins through phosphorylation at special “tyrosine” sites.

“We found that FGFR3 directly phosphorylates RSK2, which is a critical step in the process to activate (turn-on) RSK2,” says Dr. Chen.

The researchers observed that elimination of RSK2 proteins or shutting down RSK2 activity blocks FGFR3 transformation signaling in myeloma cells. This means FGFR3 requires RSK2 to transform normal cells.

“This is a beautiful model,” says Dr. Chen. “We are able to mark the connection between the oncogenic FGFR3 and its downstream protein kinase RSK2, which plays a critical role in regulation of cell cycle and survival. These findings extend our understanding of pathogenesis of multiple myeloma in a signaling basis.”

Collaborators on the project include Roberto Polakiewicz, PhD, and Ting-Lei Gu, PhD, both of Cell Signaling Technologies (CST), developers of the “PhosphoScan” technology, which enables investigators to identify hundreds to thousands of phosphorylated sequences and observe the global state of protein tyrosine phosphorylation in cells and tissues.

“Using this technology,” says Dr. Chen, “we identified RSK2 as a critical downstream signaling protein effector of FGFR3 in myeloma cells.” Other authors include researchers from the University of California at San Francisco, Harvard Medical School, Mayo Clinic and Novartis Pharma AG.

Dr. Chen and his colleagues also tested a drug called fmk that was designed by co-author Jack Taunton, PhD, at UCSF to specifically target RSK2 in treatment of human malignant myeloma cells from laboratory culture or primary samples from multiple myeloma patients, and saw that fmk effectively kills t(4;14) myeloma cells with abnormal over-expression of FGFR3.

“This study shows the potential utility of drugs that block the downstream effectors of mutant tyrosine kinases, and that these drugs are opening more doors to treating hematologic malignancies and cancers," explains Dr. Chen. In addition to the t(4;14) in multiple myeloma that is caused by abnormal over-expression of FGFR3, abnormality of FGFR3 has also been identified in human bladder and cervical cancers. The findings suggest, the authors write, that targeting RSK2 with RSK inhibitors such as fmk may be effective in treating t(4;14) multiple myeloma, as well as other diseases and cancers where mutant FGFR3 is the culprit.

Vincent Dollard | EurekAlert!
Further information:
http://www.emoryhealthcare.org
http://www.cancer.emory.edu

Further reports about: FGFR3 PhD RSK2 Signaling downstream identified myeloma

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>