Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory researchers identify signaling protein for multiple myeloma

11.09.2007
Findings may result in new therapeutic target

Researchers at Emory University’s Winship Cancer Institute are the first to discover a mechanism that plays a critical role in the multiple myeloma cell cycle and survival. Their research may result in identification of a new therapeutic target for treating multiple myeloma.

The results of the study appear in the September issue of Cancer Cell. Jing Chen, PhD, assistant professor of hematology and oncology at Emory Winship and a Georgia Cancer Coalition Distinguished Cancer Scholar, is senior author on the paper. Sumin Kang, PhD, a postdoctoral fellow at Emory Winship, is the paper's first author.

Multiple Myeloma is among the most common hematologic malignancies in patients over 65. About15 percent of multiple myeloma patients harbor a genetic abnormality called “t(4;14) chromosomal translocation” that causes over-expression of a tyrosine kinase called fibroblast growth factor receptor 3 (FGFR3).

... more about:
»FGFR3 »PhD »RSK2 »Signaling »downstream »identified »myeloma

Tyrosine kinases are molecules that act as biological switches inside cells, regulating processes including cell division and growth. Abnormal kinases have been identified as a driving force in many forms of cancer.

“We are interested in how FGFR3 mediates transforming signals,” says Dr. Chen. “We wanted to know which protein factors in cells are activated by FGFR3 and then transform normal cells to highly malignant cells. We identified Ribosomal S6 kinase 2 (RSK2), which is a protein factor that mediates signaling in cells as critical in downstream signaling of FGFR3 in myeloma cells.”

Dr. Chen and his colleagues are the first to discover a mechanism to “turn-on” RSK2 by FGFR3. FGFR3 impacts downstream proteins through phosphorylation at special “tyrosine” sites.

“We found that FGFR3 directly phosphorylates RSK2, which is a critical step in the process to activate (turn-on) RSK2,” says Dr. Chen.

The researchers observed that elimination of RSK2 proteins or shutting down RSK2 activity blocks FGFR3 transformation signaling in myeloma cells. This means FGFR3 requires RSK2 to transform normal cells.

“This is a beautiful model,” says Dr. Chen. “We are able to mark the connection between the oncogenic FGFR3 and its downstream protein kinase RSK2, which plays a critical role in regulation of cell cycle and survival. These findings extend our understanding of pathogenesis of multiple myeloma in a signaling basis.”

Collaborators on the project include Roberto Polakiewicz, PhD, and Ting-Lei Gu, PhD, both of Cell Signaling Technologies (CST), developers of the “PhosphoScan” technology, which enables investigators to identify hundreds to thousands of phosphorylated sequences and observe the global state of protein tyrosine phosphorylation in cells and tissues.

“Using this technology,” says Dr. Chen, “we identified RSK2 as a critical downstream signaling protein effector of FGFR3 in myeloma cells.” Other authors include researchers from the University of California at San Francisco, Harvard Medical School, Mayo Clinic and Novartis Pharma AG.

Dr. Chen and his colleagues also tested a drug called fmk that was designed by co-author Jack Taunton, PhD, at UCSF to specifically target RSK2 in treatment of human malignant myeloma cells from laboratory culture or primary samples from multiple myeloma patients, and saw that fmk effectively kills t(4;14) myeloma cells with abnormal over-expression of FGFR3.

“This study shows the potential utility of drugs that block the downstream effectors of mutant tyrosine kinases, and that these drugs are opening more doors to treating hematologic malignancies and cancers," explains Dr. Chen. In addition to the t(4;14) in multiple myeloma that is caused by abnormal over-expression of FGFR3, abnormality of FGFR3 has also been identified in human bladder and cervical cancers. The findings suggest, the authors write, that targeting RSK2 with RSK inhibitors such as fmk may be effective in treating t(4;14) multiple myeloma, as well as other diseases and cancers where mutant FGFR3 is the culprit.

Vincent Dollard | EurekAlert!
Further information:
http://www.emoryhealthcare.org
http://www.cancer.emory.edu

Further reports about: FGFR3 PhD RSK2 Signaling downstream identified myeloma

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>