Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory researchers identify signaling protein for multiple myeloma

11.09.2007
Findings may result in new therapeutic target

Researchers at Emory University’s Winship Cancer Institute are the first to discover a mechanism that plays a critical role in the multiple myeloma cell cycle and survival. Their research may result in identification of a new therapeutic target for treating multiple myeloma.

The results of the study appear in the September issue of Cancer Cell. Jing Chen, PhD, assistant professor of hematology and oncology at Emory Winship and a Georgia Cancer Coalition Distinguished Cancer Scholar, is senior author on the paper. Sumin Kang, PhD, a postdoctoral fellow at Emory Winship, is the paper's first author.

Multiple Myeloma is among the most common hematologic malignancies in patients over 65. About15 percent of multiple myeloma patients harbor a genetic abnormality called “t(4;14) chromosomal translocation” that causes over-expression of a tyrosine kinase called fibroblast growth factor receptor 3 (FGFR3).

... more about:
»FGFR3 »PhD »RSK2 »Signaling »downstream »identified »myeloma

Tyrosine kinases are molecules that act as biological switches inside cells, regulating processes including cell division and growth. Abnormal kinases have been identified as a driving force in many forms of cancer.

“We are interested in how FGFR3 mediates transforming signals,” says Dr. Chen. “We wanted to know which protein factors in cells are activated by FGFR3 and then transform normal cells to highly malignant cells. We identified Ribosomal S6 kinase 2 (RSK2), which is a protein factor that mediates signaling in cells as critical in downstream signaling of FGFR3 in myeloma cells.”

Dr. Chen and his colleagues are the first to discover a mechanism to “turn-on” RSK2 by FGFR3. FGFR3 impacts downstream proteins through phosphorylation at special “tyrosine” sites.

“We found that FGFR3 directly phosphorylates RSK2, which is a critical step in the process to activate (turn-on) RSK2,” says Dr. Chen.

The researchers observed that elimination of RSK2 proteins or shutting down RSK2 activity blocks FGFR3 transformation signaling in myeloma cells. This means FGFR3 requires RSK2 to transform normal cells.

“This is a beautiful model,” says Dr. Chen. “We are able to mark the connection between the oncogenic FGFR3 and its downstream protein kinase RSK2, which plays a critical role in regulation of cell cycle and survival. These findings extend our understanding of pathogenesis of multiple myeloma in a signaling basis.”

Collaborators on the project include Roberto Polakiewicz, PhD, and Ting-Lei Gu, PhD, both of Cell Signaling Technologies (CST), developers of the “PhosphoScan” technology, which enables investigators to identify hundreds to thousands of phosphorylated sequences and observe the global state of protein tyrosine phosphorylation in cells and tissues.

“Using this technology,” says Dr. Chen, “we identified RSK2 as a critical downstream signaling protein effector of FGFR3 in myeloma cells.” Other authors include researchers from the University of California at San Francisco, Harvard Medical School, Mayo Clinic and Novartis Pharma AG.

Dr. Chen and his colleagues also tested a drug called fmk that was designed by co-author Jack Taunton, PhD, at UCSF to specifically target RSK2 in treatment of human malignant myeloma cells from laboratory culture or primary samples from multiple myeloma patients, and saw that fmk effectively kills t(4;14) myeloma cells with abnormal over-expression of FGFR3.

“This study shows the potential utility of drugs that block the downstream effectors of mutant tyrosine kinases, and that these drugs are opening more doors to treating hematologic malignancies and cancers," explains Dr. Chen. In addition to the t(4;14) in multiple myeloma that is caused by abnormal over-expression of FGFR3, abnormality of FGFR3 has also been identified in human bladder and cervical cancers. The findings suggest, the authors write, that targeting RSK2 with RSK inhibitors such as fmk may be effective in treating t(4;14) multiple myeloma, as well as other diseases and cancers where mutant FGFR3 is the culprit.

Vincent Dollard | EurekAlert!
Further information:
http://www.emoryhealthcare.org
http://www.cancer.emory.edu

Further reports about: FGFR3 PhD RSK2 Signaling downstream identified myeloma

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>