Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar identified as key to malaria parasite invasion

11.09.2007
Researchers at the Johns Hopkins Malaria Research Institute (JHMRI) have identified a sugar in mosquitoes that allows the malaria-causing parasite, Plasmodium falciparum, to attach itself to the mosquito’s gut.

Invasion of the midgut cell layer is an essential stage in the parasite’s lifecycle and in the transmission of malaria from mosquitoes to humans. By reducing the level of the sugar, chondroitin sulfate, in the mosquito, the researchers prevented 95 percent of the parasites in the mosquito from attaching to the gut, thus blocking its development. The study is published in the online Early Edition of Proceedings of the National Academy of Sciences (PNAS).

“This study provides significant new insights on how the parasite develops in the mosquito, complementing our earlier identification of another parasite midgut receptor that is a target for a transmission-blocking vaccine,” said Marcelo Jacobs-Lorena, PhD, senior author of the study and a professor in the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology. “This line of research could lead to new approaches for interfering with the spread of this deadly disease.”

To determine whether the parasite utilizes chondroitin glycosaminoglycans to invade the mosquito midgut cells, the researchers used a process known as RNA interference to inhibit production of a mosquito enzyme that is needed to produce chondroitin sulfate. With the sugar removed, parasite adhesion and midgut invasion were substantially decreased.

... more about:
»Invasion »Vaccine »identified »midgut »parasite

“Our study highlights the importance of sugars in parasite invasion of the mosquito gut. Previously, this phenomenon was only observed during parasite invasion of human tissues,” said Rhoel R. Dinglasan, PhD, MPH, lead author of the study and a postdoctoral fellow with the Malaria Research Institute. “It appears as if the parasite’s use of sugars as a strategy for cell invasion of tissues is similar in both man and mosquito. This may be an Achilles’ heel for the parasite, opening up the possibility of developing a vaccine that works against all stages of the parasite’s lifecycle.”

According to the researchers, many important questions must still be answered to determine if the glycosaminolgycan identified could be a potential antigen for a transmission-blocking vaccine. In a study published earlier this year in the PNAS, the JHMRI team identified a previously unknown mosquito antigen that the parasite uses for entry into the mosquito midgut, a critical step in the Plasmodium parasite’s development. The researchers produced an antibody that acts as a blanket to prevent the parasite from accessing the mosquito midgut antigen.

Their research showed that the antibodies were effective against multiple malaria parasites and could potentially provide the basis for a future ‘universal’ malaria transmission-blocking vaccine.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu
http://malaria.jhsph.edu/

Further reports about: Invasion Vaccine identified midgut parasite

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>