Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular probe 'paints' cancer cells in living animals

11.09.2007
Researchers at the Stanford University School of Medicine have developed a molecular probe that sets aglow tumor cells within living animals. Their goal is to use the probe to improve the diagnosis and treatment of cancer and other diseases.

The probe's main ingredient is a molecule that labels active proteases - protein-destroying enzymes - that run amok in cancerous cells. The molecule is normally invisible to the naked eye but it carries a fluorescent tag that lights up when it binds to the protease. The tag beams out near-infrared light that passes through skin and is detectable with a special camera. The use of the imaging technique in mice is described in a study to be published in the Sept. 9 advance online issue of Nature Chemical Biology.

"Nowadays the detection of cancer, breast cancer for instance, is normally done by mammography, using X-rays - which might actually increase your risk of cancer. We think these probes may ultimately provide a less harmful, noninvasive method of detecting cancer," said the article's lead author Galia Blum, PhD, a postdoctoral scholar in the laboratory of Matthew Bogyo, PhD, assistant professor of pathology.

And that's just for starters.

... more about:
»Active »Bogyo »Molecule »Protease »bind »enzymes

"It's neat. The next generation of our experiments will apply the probes during surgery," said Bogyo, the study's senior author. "It would be nice to 'paint' it on tissues so you could distinguish between tumor and non-tumor."

A key advantage of this enzyme-targeting molecule is its size. About 100 times smaller than other molecular imaging reporters, it can easily slip across the cell membrane and enter living cells. It can also move through the animal quickly, which opens up the possibility of using the technique to light up tumors while surgery is in progress.

"Unlike other enzyme-targeting molecules, it's very specific, sticks to where it binds and does it all very rapidly - in 30 minutes or less," Bogyo said.

And unlike most other molecular probes, this type identifies only active enzymes. "We went one step beyond just telling if the enzymes are there. We can answer the question, 'Are they active"' That's important because an accumulation of inactive enzymes doesn't necessarily indicate disease," Blum said.

Bogyo, Blum and colleagues designed the probe to bind to a subset of a family of proteases called cysteine cathepsins, which are more active in several types of cancer as well as other diseases. Now they are tinkering with the probe's configuration in an effort to create a variant that recognizes the enzymes involved in apoptosis, the process of cell death. This could ultimately allow researchers and doctors to visualize response to chemotherapy in tumors, Bogyo said.

And because other diseases besides cancer involve hyped-up proteases - such as Alzheimer's, arthritis, atherosclerosis and osteoporosis - the approach might be of use in diagnosing and treating them as well.

The work went surprisingly smoothly because of Blum's background in chemistry as well as biology. Using her chemistry skills, she created the probes. Then she switched to biology mode and tested them. When she discovered that an earlier version of the probe worked great in tissue culture but decomposed on contact with mouse blood, she was able to tweak the molecule's structure to survive inside a living animal.

In addition to the potential health-care applications, the approach provides a valuable research tool, the researchers said. "It allows you to see exactly where enzymes are active within living animals," said Bogyo.

The Stanford researchers' ultimate goal is to test it in humans, though they'll complete more testing in animals before requesting permission from the U.S. Food and Drug Administration to conduct a human trial. "Since there are currently no fluorescent imaging agents in use in humans, the approval process is likely to require significantly more preclinical data," Bogyo said.

In preparation, they are working with James Basilion, PhD, associate professor of biomedical engineering at Case Western Reserve University, who is using the probe in surgical procedures in animals. They are now testing the probe's ability to reveal the presence of glioma tumor cells during brain surgery in mice.

"Because glioma tumor tissue looks nearly identical to normal tissue, it's very difficult for surgeons to remove every last bit of it," said Bogyo. "We think this will help."

Rosanne Spector | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

Further reports about: Active Bogyo Molecule Protease bind enzymes

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>