Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular probe 'paints' cancer cells in living animals

11.09.2007
Researchers at the Stanford University School of Medicine have developed a molecular probe that sets aglow tumor cells within living animals. Their goal is to use the probe to improve the diagnosis and treatment of cancer and other diseases.

The probe's main ingredient is a molecule that labels active proteases - protein-destroying enzymes - that run amok in cancerous cells. The molecule is normally invisible to the naked eye but it carries a fluorescent tag that lights up when it binds to the protease. The tag beams out near-infrared light that passes through skin and is detectable with a special camera. The use of the imaging technique in mice is described in a study to be published in the Sept. 9 advance online issue of Nature Chemical Biology.

"Nowadays the detection of cancer, breast cancer for instance, is normally done by mammography, using X-rays - which might actually increase your risk of cancer. We think these probes may ultimately provide a less harmful, noninvasive method of detecting cancer," said the article's lead author Galia Blum, PhD, a postdoctoral scholar in the laboratory of Matthew Bogyo, PhD, assistant professor of pathology.

And that's just for starters.

... more about:
»Active »Bogyo »Molecule »Protease »bind »enzymes

"It's neat. The next generation of our experiments will apply the probes during surgery," said Bogyo, the study's senior author. "It would be nice to 'paint' it on tissues so you could distinguish between tumor and non-tumor."

A key advantage of this enzyme-targeting molecule is its size. About 100 times smaller than other molecular imaging reporters, it can easily slip across the cell membrane and enter living cells. It can also move through the animal quickly, which opens up the possibility of using the technique to light up tumors while surgery is in progress.

"Unlike other enzyme-targeting molecules, it's very specific, sticks to where it binds and does it all very rapidly - in 30 minutes or less," Bogyo said.

And unlike most other molecular probes, this type identifies only active enzymes. "We went one step beyond just telling if the enzymes are there. We can answer the question, 'Are they active"' That's important because an accumulation of inactive enzymes doesn't necessarily indicate disease," Blum said.

Bogyo, Blum and colleagues designed the probe to bind to a subset of a family of proteases called cysteine cathepsins, which are more active in several types of cancer as well as other diseases. Now they are tinkering with the probe's configuration in an effort to create a variant that recognizes the enzymes involved in apoptosis, the process of cell death. This could ultimately allow researchers and doctors to visualize response to chemotherapy in tumors, Bogyo said.

And because other diseases besides cancer involve hyped-up proteases - such as Alzheimer's, arthritis, atherosclerosis and osteoporosis - the approach might be of use in diagnosing and treating them as well.

The work went surprisingly smoothly because of Blum's background in chemistry as well as biology. Using her chemistry skills, she created the probes. Then she switched to biology mode and tested them. When she discovered that an earlier version of the probe worked great in tissue culture but decomposed on contact with mouse blood, she was able to tweak the molecule's structure to survive inside a living animal.

In addition to the potential health-care applications, the approach provides a valuable research tool, the researchers said. "It allows you to see exactly where enzymes are active within living animals," said Bogyo.

The Stanford researchers' ultimate goal is to test it in humans, though they'll complete more testing in animals before requesting permission from the U.S. Food and Drug Administration to conduct a human trial. "Since there are currently no fluorescent imaging agents in use in humans, the approval process is likely to require significantly more preclinical data," Bogyo said.

In preparation, they are working with James Basilion, PhD, associate professor of biomedical engineering at Case Western Reserve University, who is using the probe in surgical procedures in animals. They are now testing the probe's ability to reveal the presence of glioma tumor cells during brain surgery in mice.

"Because glioma tumor tissue looks nearly identical to normal tissue, it's very difficult for surgeons to remove every last bit of it," said Bogyo. "We think this will help."

Rosanne Spector | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

Further reports about: Active Bogyo Molecule Protease bind enzymes

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>