Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular probe 'paints' cancer cells in living animals

11.09.2007
Researchers at the Stanford University School of Medicine have developed a molecular probe that sets aglow tumor cells within living animals. Their goal is to use the probe to improve the diagnosis and treatment of cancer and other diseases.

The probe's main ingredient is a molecule that labels active proteases - protein-destroying enzymes - that run amok in cancerous cells. The molecule is normally invisible to the naked eye but it carries a fluorescent tag that lights up when it binds to the protease. The tag beams out near-infrared light that passes through skin and is detectable with a special camera. The use of the imaging technique in mice is described in a study to be published in the Sept. 9 advance online issue of Nature Chemical Biology.

"Nowadays the detection of cancer, breast cancer for instance, is normally done by mammography, using X-rays - which might actually increase your risk of cancer. We think these probes may ultimately provide a less harmful, noninvasive method of detecting cancer," said the article's lead author Galia Blum, PhD, a postdoctoral scholar in the laboratory of Matthew Bogyo, PhD, assistant professor of pathology.

And that's just for starters.

... more about:
»Active »Bogyo »Molecule »Protease »bind »enzymes

"It's neat. The next generation of our experiments will apply the probes during surgery," said Bogyo, the study's senior author. "It would be nice to 'paint' it on tissues so you could distinguish between tumor and non-tumor."

A key advantage of this enzyme-targeting molecule is its size. About 100 times smaller than other molecular imaging reporters, it can easily slip across the cell membrane and enter living cells. It can also move through the animal quickly, which opens up the possibility of using the technique to light up tumors while surgery is in progress.

"Unlike other enzyme-targeting molecules, it's very specific, sticks to where it binds and does it all very rapidly - in 30 minutes or less," Bogyo said.

And unlike most other molecular probes, this type identifies only active enzymes. "We went one step beyond just telling if the enzymes are there. We can answer the question, 'Are they active"' That's important because an accumulation of inactive enzymes doesn't necessarily indicate disease," Blum said.

Bogyo, Blum and colleagues designed the probe to bind to a subset of a family of proteases called cysteine cathepsins, which are more active in several types of cancer as well as other diseases. Now they are tinkering with the probe's configuration in an effort to create a variant that recognizes the enzymes involved in apoptosis, the process of cell death. This could ultimately allow researchers and doctors to visualize response to chemotherapy in tumors, Bogyo said.

And because other diseases besides cancer involve hyped-up proteases - such as Alzheimer's, arthritis, atherosclerosis and osteoporosis - the approach might be of use in diagnosing and treating them as well.

The work went surprisingly smoothly because of Blum's background in chemistry as well as biology. Using her chemistry skills, she created the probes. Then she switched to biology mode and tested them. When she discovered that an earlier version of the probe worked great in tissue culture but decomposed on contact with mouse blood, she was able to tweak the molecule's structure to survive inside a living animal.

In addition to the potential health-care applications, the approach provides a valuable research tool, the researchers said. "It allows you to see exactly where enzymes are active within living animals," said Bogyo.

The Stanford researchers' ultimate goal is to test it in humans, though they'll complete more testing in animals before requesting permission from the U.S. Food and Drug Administration to conduct a human trial. "Since there are currently no fluorescent imaging agents in use in humans, the approval process is likely to require significantly more preclinical data," Bogyo said.

In preparation, they are working with James Basilion, PhD, associate professor of biomedical engineering at Case Western Reserve University, who is using the probe in surgical procedures in animals. They are now testing the probe's ability to reveal the presence of glioma tumor cells during brain surgery in mice.

"Because glioma tumor tissue looks nearly identical to normal tissue, it's very difficult for surgeons to remove every last bit of it," said Bogyo. "We think this will help."

Rosanne Spector | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

Further reports about: Active Bogyo Molecule Protease bind enzymes

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>