Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cells used to grow cartilage

10.09.2007
Rice method is first to yield cartilage-like cells, engineer human cartilage

Rice University biomedical engineers have developed a new technique for growing cartilage from human embryonic stem cells, a method that could be used to grow replacement cartilage for the surgical repair of knee, jaw, hip, and other joints.

"Because native cartilage is unable to heal itself, researchers have long looked for ways to grow replacement cartilage in the lab that could be used to surgically repair injuries," said lead researcher Kyriacos A. Athanasiou, the Karl F. Hasselmann Professor of Bioengineering. "This research offers a novel approach for producing cartilage-like cells from embryonic stem cells, and it also presents the first method to use such cells to engineer cartilage tissue with significant functional properties."

The results are available online and slated to appear in the September issue of the journal Stem Cells. The study involved cells from an NIH-sanctioned stem cell line.

Using a series of stimuli, the researchers developed a method of converting the stem cells into cartilage cells. Building upon this work, the researchers then developed a process for using the cartilage cells to make cartilage tissue. The results show that cartilages can be generated that mimic the different types of cartilage found in the human body, such as hyaline articular cartilage -- the type of cartilage found in all joints -- and fibrocartilage -- a type found in the knee meniscus and the jaw joint. Athanasiou said the results are exciting, as they suggest that similar methods may be used to convert the stem cell-derived cartilage cells into robust cartilage sections that can be of clinical usefulness.

Tissue engineers, like those in Athanasiou's research group, are attempting to unlock the secrets of the human body's regenerative system to find new ways of growing replacement tissues like muscle, skin, bone and cartilage. Athanasiou's Musculoskeletal Bioengineering Laboratory at Rice University specializes in growing cartilage tissues.

The idea behind using stem cells for tissue engineering is that these primordial cells have the ability to become more than one type of cell. In all people, there are many types of "adult" stem cells at work. Adult stem cells can replace the blood, bone, skin and other tissues in the body. Stem cells become specific cells based upon a complex series of chemical and biomechanical cues, signals that scientists are just now starting to understand.

Unlike adult stem cells, which can become only a limited number of cell types, embryonic stem cells can theoretically become any type of cell in the human body.

Athanasiou's group has been one of the most successful in the world at studying cartilage cells and, especially, engineering cartilage tissues. He said that for his research the primary advantage that embryonic stem cells have over adult stem cells is their ability to remain malleable.

"Identifying a readily available cell source has been a major obstacle in cartilage engineering," Athanasiou said. "We know how to convert adult stem cells into cartilage-like cells. The more problematic issue comes in trying to maintain a ready stock of adult stem cells to work with. These cells have a strong tendency to convert from stem cells into a more specific type of cell, so the clock is always ticking when we work with them."

By contrast, Athanasiou said his research group has found it easier to grow and maintain a stock of embryonic stem cells. Nonetheless, he is quick to point out that there is no clear choice about which type of stem cell works best for cartilage engineering.

"We don't know the answer to that," Athanasiou said. "It's extremely important that we study all potential cell candidates, and then compare and contrast those studies to find out which works best and under what conditions. Keep in mind that these processes are very complicated, so it may well be that different types of cells work best in different situations."

Athanasiou began studying embryonic stem cells in 2005. Since funding for the program was limited, he asked two new graduate students in his group if they were interested in pursuing the work as a secondary project to their primary research. Those students, Eugene Koay and Gwen Hoben, are co-authors of the newly published study. Both are enrolled in the Baylor College of Medicine Medical Scientist Training Program, a joint program that allows students to concurrently earn their medical degree from Baylor while undertaking Ph.D. studies at Rice.

"Eugene and Gwen are both outstanding students," Athanasiou said. "Each earned their undergraduate degree from Rice and each worked in my laboratory as undergraduate students. They have chosen to do this research because they think this may represent the future of regenerative medicine."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Athanasiou Embryonic Engineering Joint cartilage embryonic stem cells engineer method stem cells

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>