Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how human body fights off African parasite

10.09.2007
Research could lead to new methods of controlling similar parasites that cause endemic diseases

Trypanosoma are a nasty class of single-celled parasites that cause serious, even fatal, diseases in human and animals. Two species cause sleeping sickness, a disease that threatens all of sub–Saharan Africa. There’s a catch though: one parasite, Trypanosoma brucei brucei (T. b. brucei), infects animals but seems to spare humans, and scientists haven’t quite understood why.

Now, a team of researchers led by biochemists at the University of Georgia propose that T. b. brucei actually does infect humans but that the infection triggers release of hemoglobin from red blood cells. Hemoglobin appears to “arm” the human innate immune system by binding to a small fraction of high density lipoprotein (HDL), or “good cholesterol.” The hemoglobin-HDL complex then becomes a super toxin and clears the body of trypanosomes.

“This is a real paradigm shift in understanding what T. b. brucei does in humans,” said Stephen Hajduk, professor and head of the department of biochemistry and molecular biology at the University of Georgia. “It had always been assumed that it didn’t infect humans at all, but it now appears that it does and that the release of free hemoglobin leads to clearance of the infection. It was incredibly surprising to us.”

... more about:
»African »Infection »Widener »brucei »hemoglobin

Lead author on the research is Justin Widener, a graduate student in Hajduk’s lab. The research was published today in the Public Library of Science Pathogens. Widener is also a student at Brown University, where he began his work with Hajduk, who joined the UGA faculty in 2006. Other authors on the paper include April Shiflett of UGA and Marianne Jensby Nielsen and Søren Krag Moestrup of University of Aarhus in Denmark.

Hajduk and his group are interested in a parasite that does not harm humans because they asked a simple question: why can’t T. b. brucei infect humans although it is nearly identical to the African sleeping sickness-causing parasite" After all, two cousins of T. b. brucei, known as T. b. gambiense and T. b. rhodensiense, cause, respectively, chronic and acute sleeping sickness in humans. The parasites, which are carried by the tsetse fly and injected into humans and animals with its bite, have been a major health issue since the first recorded outbreak of sleeping sickness beginning in 1906.

“We know that humans are protected against T. b. brucei by the action of a high-density lipoprotein called Trypanosome Lytic Factor [TLF],” said Widener. “We investigated the mechanism of how TLF kills the parasite by using a purification technique that allowed us to show that a protein associated with TLF strongly binds hemoglobin and that hemoglobin stimulates TLF to kill the parasite.”

Because all three strains are closely related—T. rhodensiense is different from T. b. brucei by a single gene—what is true for one species could be useful in understanding the others.

While human sleeping sickness has been an important human disease in Africa for more than a century, recent epidemics of the disease in five African nations underscore the potential threat of this disease to travelers and aid workers.

One interesting aspect of trypanosomes is their ability to infect a wide range of mammals, from humans to wild game. The severity of disease caused by T. b. brucei varies depending on the host; infections in humans are cleared while a fatal disease develops in infected cattle. The application of the discovery by Widener on the mechanism of human protection may lead to better treatment of cattle infections by these parasites.

The value of the new research may lie as much in its potential as a model system for studying all trypanosomes as it does in specifically understanding why T. b. brucei doesn’t infect humans.

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: African Infection Widener brucei hemoglobin

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>