Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how human body fights off African parasite

10.09.2007
Research could lead to new methods of controlling similar parasites that cause endemic diseases

Trypanosoma are a nasty class of single-celled parasites that cause serious, even fatal, diseases in human and animals. Two species cause sleeping sickness, a disease that threatens all of sub–Saharan Africa. There’s a catch though: one parasite, Trypanosoma brucei brucei (T. b. brucei), infects animals but seems to spare humans, and scientists haven’t quite understood why.

Now, a team of researchers led by biochemists at the University of Georgia propose that T. b. brucei actually does infect humans but that the infection triggers release of hemoglobin from red blood cells. Hemoglobin appears to “arm” the human innate immune system by binding to a small fraction of high density lipoprotein (HDL), or “good cholesterol.” The hemoglobin-HDL complex then becomes a super toxin and clears the body of trypanosomes.

“This is a real paradigm shift in understanding what T. b. brucei does in humans,” said Stephen Hajduk, professor and head of the department of biochemistry and molecular biology at the University of Georgia. “It had always been assumed that it didn’t infect humans at all, but it now appears that it does and that the release of free hemoglobin leads to clearance of the infection. It was incredibly surprising to us.”

... more about:
»African »Infection »Widener »brucei »hemoglobin

Lead author on the research is Justin Widener, a graduate student in Hajduk’s lab. The research was published today in the Public Library of Science Pathogens. Widener is also a student at Brown University, where he began his work with Hajduk, who joined the UGA faculty in 2006. Other authors on the paper include April Shiflett of UGA and Marianne Jensby Nielsen and Søren Krag Moestrup of University of Aarhus in Denmark.

Hajduk and his group are interested in a parasite that does not harm humans because they asked a simple question: why can’t T. b. brucei infect humans although it is nearly identical to the African sleeping sickness-causing parasite" After all, two cousins of T. b. brucei, known as T. b. gambiense and T. b. rhodensiense, cause, respectively, chronic and acute sleeping sickness in humans. The parasites, which are carried by the tsetse fly and injected into humans and animals with its bite, have been a major health issue since the first recorded outbreak of sleeping sickness beginning in 1906.

“We know that humans are protected against T. b. brucei by the action of a high-density lipoprotein called Trypanosome Lytic Factor [TLF],” said Widener. “We investigated the mechanism of how TLF kills the parasite by using a purification technique that allowed us to show that a protein associated with TLF strongly binds hemoglobin and that hemoglobin stimulates TLF to kill the parasite.”

Because all three strains are closely related—T. rhodensiense is different from T. b. brucei by a single gene—what is true for one species could be useful in understanding the others.

While human sleeping sickness has been an important human disease in Africa for more than a century, recent epidemics of the disease in five African nations underscore the potential threat of this disease to travelers and aid workers.

One interesting aspect of trypanosomes is their ability to infect a wide range of mammals, from humans to wild game. The severity of disease caused by T. b. brucei varies depending on the host; infections in humans are cleared while a fatal disease develops in infected cattle. The application of the discovery by Widener on the mechanism of human protection may lead to better treatment of cattle infections by these parasites.

The value of the new research may lie as much in its potential as a model system for studying all trypanosomes as it does in specifically understanding why T. b. brucei doesn’t infect humans.

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: African Infection Widener brucei hemoglobin

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>