Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how human body fights off African parasite

10.09.2007
Research could lead to new methods of controlling similar parasites that cause endemic diseases

Trypanosoma are a nasty class of single-celled parasites that cause serious, even fatal, diseases in human and animals. Two species cause sleeping sickness, a disease that threatens all of sub–Saharan Africa. There’s a catch though: one parasite, Trypanosoma brucei brucei (T. b. brucei), infects animals but seems to spare humans, and scientists haven’t quite understood why.

Now, a team of researchers led by biochemists at the University of Georgia propose that T. b. brucei actually does infect humans but that the infection triggers release of hemoglobin from red blood cells. Hemoglobin appears to “arm” the human innate immune system by binding to a small fraction of high density lipoprotein (HDL), or “good cholesterol.” The hemoglobin-HDL complex then becomes a super toxin and clears the body of trypanosomes.

“This is a real paradigm shift in understanding what T. b. brucei does in humans,” said Stephen Hajduk, professor and head of the department of biochemistry and molecular biology at the University of Georgia. “It had always been assumed that it didn’t infect humans at all, but it now appears that it does and that the release of free hemoglobin leads to clearance of the infection. It was incredibly surprising to us.”

... more about:
»African »Infection »Widener »brucei »hemoglobin

Lead author on the research is Justin Widener, a graduate student in Hajduk’s lab. The research was published today in the Public Library of Science Pathogens. Widener is also a student at Brown University, where he began his work with Hajduk, who joined the UGA faculty in 2006. Other authors on the paper include April Shiflett of UGA and Marianne Jensby Nielsen and Søren Krag Moestrup of University of Aarhus in Denmark.

Hajduk and his group are interested in a parasite that does not harm humans because they asked a simple question: why can’t T. b. brucei infect humans although it is nearly identical to the African sleeping sickness-causing parasite" After all, two cousins of T. b. brucei, known as T. b. gambiense and T. b. rhodensiense, cause, respectively, chronic and acute sleeping sickness in humans. The parasites, which are carried by the tsetse fly and injected into humans and animals with its bite, have been a major health issue since the first recorded outbreak of sleeping sickness beginning in 1906.

“We know that humans are protected against T. b. brucei by the action of a high-density lipoprotein called Trypanosome Lytic Factor [TLF],” said Widener. “We investigated the mechanism of how TLF kills the parasite by using a purification technique that allowed us to show that a protein associated with TLF strongly binds hemoglobin and that hemoglobin stimulates TLF to kill the parasite.”

Because all three strains are closely related—T. rhodensiense is different from T. b. brucei by a single gene—what is true for one species could be useful in understanding the others.

While human sleeping sickness has been an important human disease in Africa for more than a century, recent epidemics of the disease in five African nations underscore the potential threat of this disease to travelers and aid workers.

One interesting aspect of trypanosomes is their ability to infect a wide range of mammals, from humans to wild game. The severity of disease caused by T. b. brucei varies depending on the host; infections in humans are cleared while a fatal disease develops in infected cattle. The application of the discovery by Widener on the mechanism of human protection may lead to better treatment of cattle infections by these parasites.

The value of the new research may lie as much in its potential as a model system for studying all trypanosomes as it does in specifically understanding why T. b. brucei doesn’t infect humans.

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: African Infection Widener brucei hemoglobin

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>