Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Primates expect others to act rationally

When trying to understand someone's intentions, non-human primates expect others to act rationally by performing the most appropriate action allowed by the environment, according to a new study by researchers at Harvard University.

The findings appear in the Sept. 7 issue of the journal of Science. The work was led by Justin Wood, a graduate student in the Department of Psychology in the Faculty of Arts and Sciences at Harvard, with David Glynn, a research assistant, and Marc Hauser, professor of psychology at Harvard, along with Brenda Phillips of Boston University.

“A dominant view has been that non-human primates attend only to what actions 'look like' when trying to understand what others are thinking," says Wood. "In contrast, our research shows that non-human primates infer others' intentions in a much more sophisticated way. They expect other individuals to perform the most rational action that they can, given the environmental obstacles that they face."

The scientists studied the behavioral response of over 120 primates, including cotton-top tamarins, rhesus macaques and chimpanzees. These species represent each of the three major groups of primates: New World monkeys, Old World monkeys and apes. All three species were tested in the same way, and the results showed the same responses among the different types.

... more about:
»ACT »RATIONAL »expect »species

In the first experiment, the primates were presented with two potential food containers, and the experimenter either purposefully grasped one of the containers, or flopped their hand onto one of the containers in an accidental manner. For all three species, the primates sought the food container that was purposefully grasped a greater number of times than the container upon which the hand was flopped. This indicates that the primate inferred goal-oriented action on the part of the experimenter when he grasped the container, and was able to understand the difference between the goal-oriented and accidental behavior.

In the second experiment, the researchers asked if the primates infer others' goals under the expectation that other individuals will perform the most rational action allowed by the environmental obstacles. Again, the primates were presented with two potential food containers. In one scenario, an experimenter touched a container with his elbow when his hands were full, and in another scenario, touched a container with his elbow when his hands were empty. The primates looked for the food in the container indicated with the elbow more often when the experimenter's hands were full. The primates considered, just as a human being would, that if someone's hands are full then it is rational for them to use their elbow to indicate the container with food, whereas if their hands are empty it is not rational for them to use their elbow, because they could have used their unoccupied hand.

Developmental psychologists have long understood that young children are able to engage in this type of rational action perception, but scientists have not understood if this ability is unique to human beings, or shared with other animals. This study suggests that this ability evolved as long as 40 million years ago, with non-human primates.

“This study represents one of the broadest comparative studies of primate cognition, and the significance of the findings is reinforced by the fact that these results were consistent across three different species of primates,” says Wood. “The results have significant implications for understanding the evolution of the processes that allow us to make sense of other people's behavior.”

Amy Lavoie | EurekAlert!
Further information:

Further reports about: ACT RATIONAL expect species

More articles from Life Sciences:

nachricht How the African clawed frog got an extra pair of genes: Whole genome sequence reveals evolutionary history of Xenopus laevis
27.10.2016 | Hokkaido University

nachricht Mitochondria control stem cell fate
27.10.2016 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>