Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin as a living coloring book

10.09.2007
Specialized recipient cells determine where pigment is deposited in epidermis and hair

The pigment melanin, which is responsible for skin and hair color in mammals, is produced in specialized cells called melanocytes and then distributed to other cells. But not every cell in the complex layers of skin becomes pigmented. The question of how melanin is delivered to appropriate locations may have been answered by a study from researchers at the Massachusetts General Hospital (MGH) Cutaneous Biology Research Center (CBRC).

“Pigment recipient cells essentially tell melanocytes where to deposit melanin, and the pattern of those recipients determines pigment patterns,” says Janice Brissette, PhD, who led the study. “Recipient cells act like the outlines in a child’s coloring book; as recipient cells develop, they form a ‘picture’ that is initially colorless but is then ‘colored in’ by the melanocytes.” The report appears in the Sept. 7 issue of Cell.

In humans, melanin is deposited in both the skin and the hair; but in some other mammals such as mice, melanin is primarily deposited in the coat, leaving the skin beneath the coat unpigmented. Melanocytes deposit melanin via cellular extensions called dendrites that reach out to other cells in the epidermis (the outer layer of skin) or the hair follicles. But the mechanism determining whether melanin is delivered to a particular cell has been unknown.

... more about:
»Foxn1 »Melanin »Pigment »melanocytes

The MGH-CBRC researchers theorized that a mouse gene known as Foxn1 might play a role. Lack of Foxn1 is responsible for so-called ‘nude mice,’ which have hair that is so brittle it breaks off, resulting in virtually total hairlessnes, and other defects of the skin. A similar phenomenon exists in humans with inactivation of the corresponding gene.

When the researchers developed a strain of transgenic mice in which Foxn1 is misexpressed in cells that do not usually contain melanin, they found those normally colorless areas became pigmented. Examining the skin of the transgenic mice revealed that melanocytes were contacting and delivering melanin to the cells in which Foxn1 was abnormally activated. No pigment was observed in the corresponding tissues of normal mice. Examination of human skin samples showed that the human version of Foxn1 was also expressed in cells known to be pigment recipients. Further experiments revealed that Foxn1 signals melanocytes through a protein called Fgf2, levels of which rise as Foxn1 espression increases.

“Foxn1 makes epithelial cells into pigment recipients, which attract melanocytes and stimulate pigment transfer, engineering their own pigmentation,” says Brissette, an associate professor of Dermatology at Harvard Medical School. She and her colleagues note that the Foxn1/Fgf2 pathway probably has additional functions in the skin and that it is probably not the only pathway responsible for the targeting of pigment.

“We know that Foxn1 and Fgf2 act in concert with other factors and function within a larger network of genes. Our next step will be to identify other genes that can confer the pigment recipient phenotype or control the targeting of pigment,” Brissette adds. Her research may eventually be relevant to disorders such as vitiligo – in which pigment disappears from patches of skin – age spots, the greying of hair and even the deadly melanocyte-based skin cancer melanoma.

Emily Parker | EurekAlert!
Further information:
http://www.massgeneral.org

Further reports about: Foxn1 Melanin Pigment melanocytes

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>