Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of genomic imprinting

10.09.2007
How we come to express the genes of one parent over the other is now better understood through studying the platypus and marsupial wallaby – and it doesn’t seem to have originated in association with sex chromosomes.

New research published in the online open access journal, BMC Evolutionary Biology, has shed light on the evolution of genomic imprinting, in which specific genes on chromosomes that have been inherited from one parent are expressed in an organism, while the same genes on the chromosome inherited from the other parent are repressed.

Imprinting arises from some kind of ‘epigenetic memory’ – modifications to the DNA from one parent, such as the way the chromosomal material is packaged, that do not allow particular genes to be expressed. The reasons why imprinting evolved are not understood. It is known, however, that different patterns of imprinting occur in different classes of mammals, with some classes of mammals exhibiting the phenomenon and others not. Because the evolutionary relationship between mammals is well documented, patterns of imprinting in the different genomes can provide important clues about the evolution of imprinting.

One theory is that imprinted genes arose from sex chromosomes, which can be epigenetically ‘shut down’ to control the dosage of genes. Another idea is that imprinting arose from an ancestral chromosome that was itself imprinted.

... more about:
»Evolution »imprinted »parent »platypus

A group led by father and daughter, Malcolm and Anne Ferguson-Smith, of the University of Cambridge tested these ideas by mapping known sequences of imprinted genes in two mammals, the monotreme platypus and the marsupial wallaby, which occupy distinct positions in mammalian evolution.

The results of the distribution studies suggest that imprinted genes were not located on an ancestrally imprinted chromosome, nor were they associated with sex chromosomes. Rather it appears that imprinting evolved in a stepwise, adaptive way, with each gene or cluster becoming imprinted as the need arose.

The study is also important because despite its evolutionary importance, the platypus remains cytogenetically under-characterised. By linking specific sequences to particular chromosomes, the researchers have pinpointed important markers on the platypus genome.

Charlotte Webber | EurekAlert!
Further information:
http://www.biomedcentral.com

Further reports about: Evolution imprinted parent platypus

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>