Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop mouse model of autism spectrum disorders

07.09.2007
Howard Hughes Medical Institute researchers have genetically engineered mice that harbor the same genetic mutation found in some people with autism and Asperger syndrome.

Mice with this mutation show a similar type of social impairment and cognitive enhancement as the type seen in some people with autism spectrum disorders (ASDs). ASDs are enigmatic cognitive disorders that impair a patient's social interactions, but do not necessarily limit their intelligence.

The scientists said the mice they developed may represent an important advance in modeling autism spectrum disorders in mice and offer researchers a new tool for understanding how specific defects in neural development may lead to autism.

Howard Hughes Medical Institute investigator Thomas Südhof and his colleagues at the University of Texas Southwestern Medical Center published their findings September 6, 2007, in Science Express, which provides electronic publication of selected Science papers ahead of print.

... more about:
»ASDs »Autism »Model »Mutation »Protein »Südhof »disorders »spectrum

The researchers engineered mice that have a single mutation in the gene for a protein called neuroligin-3. This protein functions as a cell adhesion molecule in synapses, the junctions that connect neurons in the brain and allow them to communicate with each other. Synapses are essential to all brain activities, such as perception, behavior, memory, and thinking. Südhof said that the neuroligin-3 mutation that his team recapitulated in the mice has been identified in some people with genetic conditions known as autism spectrum disorders (ASDs). Mutations in proteins that interact with neuroligin-3 have also been detected in some people with ASDs.

Proper function of the brain’s neuronal networks depends on a delicate balance between excitatory and inhibitory electrophysiological signaling among neurons. Südhof and his colleagues found that this balance was disrupted in the mutant mice, which also showed an increase in the signaling of inhibitory neurotransmitters. In contrast, they found that knocking out the neurologin-3 gene entirely produced no such imbalance.

The most striking behavioral abnormality they observed in the mutant mice was an impaired ability to interact socially with other mice. However, the animals showed enhanced spatial learning and memory—and were more able than normal mice to learn and to remember the location of a platform submerged in murky water.

“This combination of electrophysiological and behavioral effects is quite remarkable,” said Südhof. “It was also significant that these mice did not exhibit any other impairment of nervous system function – there was no abnormal locomotor activity or motor coordination, for example. This was a selective change, with social impairment on the one hand, yet cognitive enhancement on the other.”

Südhof said the mutant mice he and his colleagues developed potentially offer major advantages over other mouse models of ASDs. “In mouse models of autism that I am aware of, the autistic symptoms are only one minor part of the overall disease,” he said. “For example, autistic symptoms are only one component of mouse models of Fragile X syndrome.

“What sets this mouse model apart is that the mouse shows highly selective social deficits and memory enhancement, but as far as we can tell, no other pathologies. This makes it a potentially useful model for a subset of people with ASDs with just such characteristics,” he said.

Südhof his colleagues will use the mouse model to ask additional questions about the role that neuroligin proteins play in neural function and in ASDs. “We can also use these mice to study how these autistic symptoms—loss of social ability and enhanced memory—arise from the increase in inhibitory neurotransmission,” he said. “The key to understanding this mechanism will be in finding out what parts of the brain are responsible for these characteristics. And with this mouse model, we can identify precisely where the mutation acts in the brain.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: ASDs Autism Model Mutation Protein Südhof disorders spectrum

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>