Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop mouse model of autism spectrum disorders

07.09.2007
Howard Hughes Medical Institute researchers have genetically engineered mice that harbor the same genetic mutation found in some people with autism and Asperger syndrome.

Mice with this mutation show a similar type of social impairment and cognitive enhancement as the type seen in some people with autism spectrum disorders (ASDs). ASDs are enigmatic cognitive disorders that impair a patient's social interactions, but do not necessarily limit their intelligence.

The scientists said the mice they developed may represent an important advance in modeling autism spectrum disorders in mice and offer researchers a new tool for understanding how specific defects in neural development may lead to autism.

Howard Hughes Medical Institute investigator Thomas Südhof and his colleagues at the University of Texas Southwestern Medical Center published their findings September 6, 2007, in Science Express, which provides electronic publication of selected Science papers ahead of print.

... more about:
»ASDs »Autism »Model »Mutation »Protein »Südhof »disorders »spectrum

The researchers engineered mice that have a single mutation in the gene for a protein called neuroligin-3. This protein functions as a cell adhesion molecule in synapses, the junctions that connect neurons in the brain and allow them to communicate with each other. Synapses are essential to all brain activities, such as perception, behavior, memory, and thinking. Südhof said that the neuroligin-3 mutation that his team recapitulated in the mice has been identified in some people with genetic conditions known as autism spectrum disorders (ASDs). Mutations in proteins that interact with neuroligin-3 have also been detected in some people with ASDs.

Proper function of the brain’s neuronal networks depends on a delicate balance between excitatory and inhibitory electrophysiological signaling among neurons. Südhof and his colleagues found that this balance was disrupted in the mutant mice, which also showed an increase in the signaling of inhibitory neurotransmitters. In contrast, they found that knocking out the neurologin-3 gene entirely produced no such imbalance.

The most striking behavioral abnormality they observed in the mutant mice was an impaired ability to interact socially with other mice. However, the animals showed enhanced spatial learning and memory—and were more able than normal mice to learn and to remember the location of a platform submerged in murky water.

“This combination of electrophysiological and behavioral effects is quite remarkable,” said Südhof. “It was also significant that these mice did not exhibit any other impairment of nervous system function – there was no abnormal locomotor activity or motor coordination, for example. This was a selective change, with social impairment on the one hand, yet cognitive enhancement on the other.”

Südhof said the mutant mice he and his colleagues developed potentially offer major advantages over other mouse models of ASDs. “In mouse models of autism that I am aware of, the autistic symptoms are only one minor part of the overall disease,” he said. “For example, autistic symptoms are only one component of mouse models of Fragile X syndrome.

“What sets this mouse model apart is that the mouse shows highly selective social deficits and memory enhancement, but as far as we can tell, no other pathologies. This makes it a potentially useful model for a subset of people with ASDs with just such characteristics,” he said.

Südhof his colleagues will use the mouse model to ask additional questions about the role that neuroligin proteins play in neural function and in ASDs. “We can also use these mice to study how these autistic symptoms—loss of social ability and enhanced memory—arise from the increase in inhibitory neurotransmission,” he said. “The key to understanding this mechanism will be in finding out what parts of the brain are responsible for these characteristics. And with this mouse model, we can identify precisely where the mutation acts in the brain.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: ASDs Autism Model Mutation Protein Südhof disorders spectrum

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>