Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop mouse model of autism spectrum disorders

07.09.2007
Howard Hughes Medical Institute researchers have genetically engineered mice that harbor the same genetic mutation found in some people with autism and Asperger syndrome.

Mice with this mutation show a similar type of social impairment and cognitive enhancement as the type seen in some people with autism spectrum disorders (ASDs). ASDs are enigmatic cognitive disorders that impair a patient's social interactions, but do not necessarily limit their intelligence.

The scientists said the mice they developed may represent an important advance in modeling autism spectrum disorders in mice and offer researchers a new tool for understanding how specific defects in neural development may lead to autism.

Howard Hughes Medical Institute investigator Thomas Südhof and his colleagues at the University of Texas Southwestern Medical Center published their findings September 6, 2007, in Science Express, which provides electronic publication of selected Science papers ahead of print.

... more about:
»ASDs »Autism »Model »Mutation »Protein »Südhof »disorders »spectrum

The researchers engineered mice that have a single mutation in the gene for a protein called neuroligin-3. This protein functions as a cell adhesion molecule in synapses, the junctions that connect neurons in the brain and allow them to communicate with each other. Synapses are essential to all brain activities, such as perception, behavior, memory, and thinking. Südhof said that the neuroligin-3 mutation that his team recapitulated in the mice has been identified in some people with genetic conditions known as autism spectrum disorders (ASDs). Mutations in proteins that interact with neuroligin-3 have also been detected in some people with ASDs.

Proper function of the brain’s neuronal networks depends on a delicate balance between excitatory and inhibitory electrophysiological signaling among neurons. Südhof and his colleagues found that this balance was disrupted in the mutant mice, which also showed an increase in the signaling of inhibitory neurotransmitters. In contrast, they found that knocking out the neurologin-3 gene entirely produced no such imbalance.

The most striking behavioral abnormality they observed in the mutant mice was an impaired ability to interact socially with other mice. However, the animals showed enhanced spatial learning and memory—and were more able than normal mice to learn and to remember the location of a platform submerged in murky water.

“This combination of electrophysiological and behavioral effects is quite remarkable,” said Südhof. “It was also significant that these mice did not exhibit any other impairment of nervous system function – there was no abnormal locomotor activity or motor coordination, for example. This was a selective change, with social impairment on the one hand, yet cognitive enhancement on the other.”

Südhof said the mutant mice he and his colleagues developed potentially offer major advantages over other mouse models of ASDs. “In mouse models of autism that I am aware of, the autistic symptoms are only one minor part of the overall disease,” he said. “For example, autistic symptoms are only one component of mouse models of Fragile X syndrome.

“What sets this mouse model apart is that the mouse shows highly selective social deficits and memory enhancement, but as far as we can tell, no other pathologies. This makes it a potentially useful model for a subset of people with ASDs with just such characteristics,” he said.

Südhof his colleagues will use the mouse model to ask additional questions about the role that neuroligin proteins play in neural function and in ASDs. “We can also use these mice to study how these autistic symptoms—loss of social ability and enhanced memory—arise from the increase in inhibitory neurotransmission,” he said. “The key to understanding this mechanism will be in finding out what parts of the brain are responsible for these characteristics. And with this mouse model, we can identify precisely where the mutation acts in the brain.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: ASDs Autism Model Mutation Protein Südhof disorders spectrum

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>