Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ‘Knock-Out’ Gene Model Provides Molecular Clues to Breast Cancer

07.09.2007
New insights into the role of estrogen receptor in mammary gland development may help scientists better understand the molecular origin of breast cancer, according to new research from the University of Cincinnati (UC).

About a decade ago, U.S. scientists at the National Institutes of Health (NIH) developed a standard estrogen receptor (ER) gene knock-out mouse model to study the estrogen receptor’s role in human diseases.

“Unfortunately, because these mice lacked mammary glands as a consequence of genetic manipulation, using this model to study the relationship between the estrogen receptor and breast cancer proved ineffective,” explains Sohaib Khan, PhD, professor of cell and cancer biology at UC.

“Knocking out the estrogen receptor gene for the entire genome, as the NIH scientists did, doesn’t just affect the function of the receptor in all estrogen-responsive organs. It also creates an imbalance in the body’s circulating sex hormone levels, which could affect other physiological functions,” Khan adds. “An alternative model was clearly needed to study the intricacies of estrogen receptors involvement in this disease.”

... more about:
»Development »Estrogen »Tissue »breast »gland »mammary »receptor

Estrogen receptor is a cellular protein that binds with the hormone estrogen and facilitates action in different parts of the body, including the mammary gland. Research has shown that about 70 percent of breast cancer patients have estrogen receptor-positive breast cancer, meaning their tumors will have some beneficial response to anti-estrogen drugs like tamoxifen (ta-MOX’-ee-fen, marketed as Nolvodex).

After two years of work, Khan says his team has developed a knock-out mouse model that will allow scientists to study the role of estrogen receptor in specific organs (for example, mammary glands) without affecting estrogen-signaling throughout the rest of its body.

Khan used what is called a “conditional knock-out technique” to develop a new mouse model that retains estrogen receptor in all tissues except mammary tissue, allowing scientists to study the receptor’s role in breast development and breast cancer.

Using this model, Khan’s team found that knocking out the gene only in mammary tissue resulted in abnormalities that compromised milk production in the nursing female. This suggests that estrogen expression is essential for normal duct development during puberty, pregnancy and lactation.

Khan and his coworkers report the creation of this model and its potential implications in an early online edition of the Proceedings of the National Academy of Sciences on Sept. 4, 2007, followed by the print issue Sept. 11, 2007. The study directly refutes previous research, which suggests that estrogen receptor in epithelial cells was not essential to normal mammary gland development.

Mammary tissue is made up of two cell types—stromal cells, which give the tissue structure, and epithelial cells, which make up the lining of the mammary gland and become cancerous in the majority of breast cancers.

Unlike other organs in the body, the mammary glands develop after birth in response to increases in circulating hormones. This triggers growth of a network of branched ducts throughout the breast tissue that do not change again until a woman becomes pregnant.

“Even though the relationship between the estrogen receptor and breast cancer is well established, we still know very little about the receptor’s mechanism of action,” explains Khan, corresponding author of the study. “Unless we study those mechanisms more closely, improved strategies for breast cancer treatments will not be possible.”

Premenopausal women with breast cancer are currently given five years of tamoxifen, a drug that blocks the estrogen receptor action in cancer cells, to prevent recurrence. Studies have shown that the drug reduces recurrence in 40 percent of the women who take it, but Khan says many women eventually develop resistance to the drug.

Using this unique mouse model, UC researchers are currently collaborating with scientists at Dana Farber Cancer Institute/Harvard Medical School to understand the relationship between estrogen-signaling and oncogene-mediated breast cancer development. Future findings from these studies could help scientists better understand the molecular origin of breast cancer and develop new drugs to more effectively treat it.

This study was funded by grants from the National Institutes of Health, U.S. Department of Defense and the UC pilot cancer grant program. Collaborators include Kay-Uwe Wagner, PhD, of the University of Nebraska, and UC colleagues Yuxin Feng and David Manka, PhD.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

Further reports about: Development Estrogen Tissue breast gland mammary receptor

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>