Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NO solution to high salt intake

08.04.2002


Nitric oxide, normally toxic at high concentrations, is now known to be involved in a number of functions within the nervous system of many animals. New research being presented today at the Society for Experimental Biology conference reveals for the first time that nitric oxide is also present within the neurosecretory system of fish and may help them cope with changes in environmental salinity.



Within the mammalian nervous system it was thought that nerve cells communicated exclusively using `traditional` neurotransmitters - small peptide molecules which travel between nerve cells binding to their surface and causing them to become electrically excited. It is now believed that a new class of transmitter exists - nitric oxide (NO). As a gas, NO is able to penetrate the cell and act directly within it, modulating its activity and allowing a rapid reaction to environmental change. This transmitter has been implicated in a variety of nervous functions from olfaction -the sense of smell - to hormone release.

The presence and activity of nitric oxide has, in the last 10 years, been demonstrated in almost every species of animal, says Dr Carla Cioni of `La Sapienza` University, Rome. At the conference in Swansea, Dr Cioni will show that NO may play a role within the neurosecretory system of fish. Fish possess two neurosecretory systems - essentially nerve cells which are able to release hormones - in the brain and, strangely, the tail. The system in the tail is known as the urophysis and produces urotensins. These proteins are released into the blood and cause circulatory changes which may help the fish to cope with changes in salinity.


Dr Cioni, and colleague Dr Bordieri, have been able to identify the presence of a specific enzyme, neuronal NO synthase, within these cells. This enzyme plays a crucial role in producing nitric oxide. Dr Cioni suggests that the production of this gas may modulate the release of urotensins into the bloodstream thus altering their concentration within the blood and their effect on blood pressure. Support for this theory has come from collaborative work with British scientists. It seems that the electrical (nervous) activity of the fish`s neurosecretory cells can be altered artificially by adding, or removing NO. In the presence of excess NO activity increases, and in its absence it decreases, lending considerable support to Dr Cioni`s theory.

"The next stage of our research to determine whether NO is directly involved in salinity regulation, where fish adjust to varying salinity as they move through different waters. But it seems clear that the NO system is a virtually universal phenomenon within the nervous systems of animals."

Jenny Gimpel | alphagalileo

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>