Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NO solution to high salt intake

08.04.2002


Nitric oxide, normally toxic at high concentrations, is now known to be involved in a number of functions within the nervous system of many animals. New research being presented today at the Society for Experimental Biology conference reveals for the first time that nitric oxide is also present within the neurosecretory system of fish and may help them cope with changes in environmental salinity.



Within the mammalian nervous system it was thought that nerve cells communicated exclusively using `traditional` neurotransmitters - small peptide molecules which travel between nerve cells binding to their surface and causing them to become electrically excited. It is now believed that a new class of transmitter exists - nitric oxide (NO). As a gas, NO is able to penetrate the cell and act directly within it, modulating its activity and allowing a rapid reaction to environmental change. This transmitter has been implicated in a variety of nervous functions from olfaction -the sense of smell - to hormone release.

The presence and activity of nitric oxide has, in the last 10 years, been demonstrated in almost every species of animal, says Dr Carla Cioni of `La Sapienza` University, Rome. At the conference in Swansea, Dr Cioni will show that NO may play a role within the neurosecretory system of fish. Fish possess two neurosecretory systems - essentially nerve cells which are able to release hormones - in the brain and, strangely, the tail. The system in the tail is known as the urophysis and produces urotensins. These proteins are released into the blood and cause circulatory changes which may help the fish to cope with changes in salinity.


Dr Cioni, and colleague Dr Bordieri, have been able to identify the presence of a specific enzyme, neuronal NO synthase, within these cells. This enzyme plays a crucial role in producing nitric oxide. Dr Cioni suggests that the production of this gas may modulate the release of urotensins into the bloodstream thus altering their concentration within the blood and their effect on blood pressure. Support for this theory has come from collaborative work with British scientists. It seems that the electrical (nervous) activity of the fish`s neurosecretory cells can be altered artificially by adding, or removing NO. In the presence of excess NO activity increases, and in its absence it decreases, lending considerable support to Dr Cioni`s theory.

"The next stage of our research to determine whether NO is directly involved in salinity regulation, where fish adjust to varying salinity as they move through different waters. But it seems clear that the NO system is a virtually universal phenomenon within the nervous systems of animals."

Jenny Gimpel | alphagalileo

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>