Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Simple Method to Create Natural Drug Products

06.09.2007
Scientists replicate assembly of antibacterial molecules in a process previously exclusive to cells

Until now, only the intricate machinery inside cells could take a mix of enzyme ingredients, blend them together and deliver a natural product with an elaborate chemical structure such as penicillin. Researchers at UC San Diego's Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences and the University of Arizona have for the first time demonstrated the ability to mimic this process outside of a cell.

A team led by Qian Cheng and Bradley Moore of Scripps was able to synthesize an antibiotic natural product created by a Hawaiian sea sediment bacterium. They did so by combining a cocktail of enzymes, the protein catalysts inside cells, in a relatively simple mixing process inside a laboratory flask. The research paper, along with a companion study describing a similar process achieved at Harvard Medical School with anti-tumor products, is published in the September issue of Nature Chemical Biology.

Qian Cheng, lead author of the Nature Chemical Biology research paper.
"This study may signal the start of a new era in how drugs are synthesized," said Moore, a professor in the Center for Marine Biotechnology and Biomedicine at Scripps. "Assembling all the enzymes together in a single reaction vessel is a different way to make a complex molecule."
... more about:
»Researchers »Scripps »natural

While much more work is needed to employ this process on a mass scale, the achievement proves that such synthesis is possible relatively cheaply and easily-without the use of man-made chemicals-otherwise known as "green" chemistry.

Most of the medicinal drugs on the market today are made synthetically. Researchers such as Moore and Scripps Oceanography's Bill Fenical have looked to the oceans as rich sources of new natural products to potentially combat diseases such as cancer.

The antibiotic synthesized in Moore's laboratory, called enterocin, was assembled in approximately two hours. Such a compound would normally take months if not a year to prepare chemically, according to Moore.

Rather than a "eureka" moment that led to the breakthrough, Moore said the process was achieved incrementally. The time-consuming work was spent beforehand identifying and preparing the enzymes that would ultimately catalyze the synthesis, also known as assembling the "biosynthetic pathway."

"We've been preparing for some time now a 'biological toolbox,'" said Moore. "In this new process the enzymes become the tools to do the synthesis."

An article in Nature Chemical Biology by Robert Fecik of the University of Minnesota indicated that "... Moore and co-workers have now taken biosynthetic pathway reconstruction to a new level."

The new research also carries the potential to combine certain natural enzymes to produce new molecules that typically cannot be found in nature with the goal of developing new drugs. Moore calls these "unnatural natural products."

Also joining Cheng and Moore in the research were Dario Meluzzi of the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and Longkuan Xiang and Miho Izumikawa of the University of Arizona.

The U.S. National Institutes of Health supported the research.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Researchers Scripps natural

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>