Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible Hepatitis C vaccine

06.09.2007
Hepatitis C Virus (HCV) infects up to 500,000 people in the UK alone, many of the infections going undiagnosed.

It is the single biggest cause of people requiring a liver transplant in Britain. Now, in a collaborative effort with groups across Europe and the USA, scientists from The University of Nottingham have found monoclonal antibodies which may be a significant step towards a vaccine.

Hepatitis C treatment is expensive and not successful in all patients. Untreated or unresponsive patients can go on to develop cirrhosis of the liver, with life affecting consequences or the need for a liver transplant.

Dr Alexander Tarr, a Research Fellow at the Institute of Infection, Immunity and Inflammation presented a paper ‘Human antibodies to Hepatitis C virus — potential for vaccine design’ at the Society for General Microbiology’s 161st meeting which is being held at The University of Edinburgh this week.

... more about:
»Antibodies »Hepatitis »Hepatitis C »Vaccine

The group has recently analysed antibodies that can successfully prevent infection with many diverse strains of Hepatitis C virus in laboratory models. Dr Tarr said: “The clinical potential of this work cannot be overstated. Historically, successful vaccines against viruses have required the production of antibodies, and this is likely to be the case for Hepatitis C virus. Identifying regions of the virus that are able to induce broadly reactive neutralising antibodies is a significant milestone in the development of a HCV vaccine, which will have distinct healthcare benefits for hepatitis sufferers, and could also help us design vaccines for other chronic viral diseases such as HIV”.

Hepatitis C virus infects 180 million people worldwide. Infection with the virus can lead to liver cancer, and is the most common reason for liver transplantation in both the UK and the USA.

“We are also currently exploring the possibility of improving liver transplantation success rates by passively infusing people with these antibodies” said Dr Tarr. “We are also using the information gained by identifying and characterising the antibody responses to Hepatitis C virus to design new ways of making vaccine candidates. If the antibodies we have discovered can be reproduced by vaccination, control of the disease might be possible”.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

Further reports about: Antibodies Hepatitis Hepatitis C Vaccine

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>