Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The aye-ayes have it: The preservation of color vision in a creature of the night

05.09.2007
A quest to gain a more complete picture of color vision evolution has led Biodesign Institute researcher Brian Verrelli to an up-close, genetic encounter with one of the world’s most rare and bizarre-looking primates.

Verrelli and his ASU team have performed the first sweeping study of color vision in the aye-aye (pronounced “eye-eye”), a bushy-tailed, Madagascar native primate with a unique combination of physical features including extremely large eyes and ears, and elongated fingers for reaching hard to access insects and other foods.

Verrelli, lead author George Perry, and collaborator Robert Martin’s results, published in the journal Molecular Biology and Evolution, have led to some surprising conclusions on how this nocturnal primate may have retained color vision function.

Verrelli’s group focuses on color vision to better understand genetic variation between human and other primate populations and the truly big evolutionary questions as to what makes us human. “At least within humans and some other primates, we know that there are three different genes responsible for color vision,” said Verrelli. The genes, called opsins, come in three forms that shape our color vision palette, one for blue, another for green, and a third for red.

... more about:
»Genetic »Verrelli »aye-aye »endangered »nocturnal »opsin »primate

“What makes that very interesting is that the green and red are found on the X chromosome [sex chromosome], and it is the manipulation of those two genes alone which is related to color blindness for eight to ten percent of the male population,” explains Verrelli. In a 2004 study in the American Journal of Human Genetics by Verrelli and collaborator Sarah Tishkoff of the University of Maryland, they suggested that natural genetic selection has provided women with a frequent ability to better discriminate between colors than men.

“These three genes may explain all the variation that we might see across human populations in color vision,” said Verrelli. “But how did our range of color vision variation come to be in the first place"”

To help trace back the evolution of color vision, Verrelli’s collaborator Perry turned to the endangered aye-aye, a primate representative of lemurs. These primates split from other groups including humans, apes, and monkeys more than sixty million years ago, and are thought to be in some ways representative of the early primates that lived at that time. “We chose the aye-aye specifically because it has a very interesting behavior in that it is fully nocturnal, and so, it raises an obvious and straightforward question: If you are an animal that lives at night, do you need color vision"”

In a simple case of ‘use it or lose it,’ the prevailing theory suggested that nocturnal primates cannot use color vision to see, and so the genes that they have for color vision accumulated mutations and degraded over evolutionary time.

From a practical standpoint, studying color vision in the aye-aye proved to be a daunting endeavor. Since the aye-aye is an endangered species, obtaining DNA samples in the wild was not possible. The group turned to a few rare international research institutions and colleagues that have aye-ayes to obtain DNA samples for their study.

In all total, they obtained samples from eight aye-ayes for their study. It took a year and a half to analyze the samples, since Perry and Verrelli had to invent the methodology to perform the first wide-range genetic analysis on the aye-aye. “From a conservation, population and functional viewpoint, it was the first study of its kind,” said Verrelli.

The results his team found were so startling that they had to recheck them twice. “When examining these genes in the aye-aye, we realized that they are not degrading,” said Verrelli. “In fact, for the green opsin gene, we did not find a single mutation in it. The opsin genes look to be absolutely fully functional, which is completely counter to how we had believed color vision evolved in nocturnal mammals.”

The authors plan to collaborate with others to perform behavioral studies to see if aye-ayes can respond to colors and further molecular studies to identify the exact color absorption by the opsin proteins to see how this may differ from other primates that are not nocturnal.

The study has not only proved important to understanding color vision evolution, but also has shown the value of examining the dazzling diversity of life, especially in endangered species.

“We not only need to focus on organisms that are related to us and are common, but also organisms that are uncommon and endangered, for there may be behaviors and physical features that, once they are lost, we may never understand.”

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu
http://mbe.oxfordjournals.org/cgi/content/full/24/9/1963
http://www.journals.uchicago.edu/AJHG/journal/issues/v75n3/41142/41142.html

Further reports about: Genetic Verrelli aye-aye endangered nocturnal opsin primate

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>