Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick microchip test for dangerous antibiotic resistant bacteria

05.09.2007
Researchers at the Veterinary Laboratories Agency in Surrey have developed microchips capable of quickly and cheaply identifying dangerous and drug resistant bacteria in clinical samples, scientists announced today (Wednesday 5 September 2007) at the Society for General Microbiology's 161st Meeting at the University of Edinburgh, UK, which runs from 3-6 September 2007.

For the first time doctors and veterinarians will be able to test clinical samples from their patients for the presence of the genes for antibiotic resistance in bacteria, getting the results within 24 hours instead of having to wait for as much as a week.

"We have developed a test chip which can accurately identify 56 virulence genes in the diarrhoea-causing Escherichia coli bacteria and 54 antimicrobial resistance genes covering all the known families of gram-negative bacteria", says Dr Muna Anjum from the UK¡¦s Veterinary Laboratories Agency in Addlestone, Surrey.

The chip will speed up the process of diagnosis and treatment by giving quicker results from clinical testing laboratories. The chip will also make it possible to carry out routine surveillance studies to monitor the way genes for virulence and antimicrobial resistance are spread in the environment, food samples, or even in farm and wild animals.

... more about:
»Clinical »antibiotic »dangerous »resistance

"Our chips have already been used very successfully in a survey of microbial resistance in human clinical isolates, foods, farm animals and also in wild animals, where we were looking at them as possible reservoirs of infection which can transmit disease back into farm animals", says Dr Anjum.

The miniaturised microarray chips were developed by studying and identifying the dangerous genes from samples of gut bacteria including the diarrhoea-causing E. coli bacteria and the food poisoning bug Salmonella.

In a test of the new chip screening technique, the most common antibiotic resistance gene was identified in 90% of E. coli and 56% of Salmonella bacteria from a random group of animal and human clinical samples. The tests even identified some unique and previously unknown combinations of virulence genes, whose significance still needs to be determined.

"In the near future, we are planning to automate the method to enable each sample to be tested for up to 600 genes and for 96 samples to be processed in half a day", says Dr Muna Anjum. "This will allow large scale monitoring of bacterial pathogens to see how they gain and lose genes related to disease and its control".

This technology will also allow scientists to search for and identify important genes from other pathogens and bacteria, for instance genes which may be commercially important in industrial processes such as waste handling, plastics production, manufacturing, food processing or pharmaceutical development.

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk
http://www.sgm.ac.uk/meetings/MTGPAGES/Edinburgh07.cfm

Further reports about: Clinical antibiotic dangerous resistance

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>