Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick microchip test for dangerous antibiotic resistant bacteria

05.09.2007
Researchers at the Veterinary Laboratories Agency in Surrey have developed microchips capable of quickly and cheaply identifying dangerous and drug resistant bacteria in clinical samples, scientists announced today (Wednesday 5 September 2007) at the Society for General Microbiology's 161st Meeting at the University of Edinburgh, UK, which runs from 3-6 September 2007.

For the first time doctors and veterinarians will be able to test clinical samples from their patients for the presence of the genes for antibiotic resistance in bacteria, getting the results within 24 hours instead of having to wait for as much as a week.

"We have developed a test chip which can accurately identify 56 virulence genes in the diarrhoea-causing Escherichia coli bacteria and 54 antimicrobial resistance genes covering all the known families of gram-negative bacteria", says Dr Muna Anjum from the UK¡¦s Veterinary Laboratories Agency in Addlestone, Surrey.

The chip will speed up the process of diagnosis and treatment by giving quicker results from clinical testing laboratories. The chip will also make it possible to carry out routine surveillance studies to monitor the way genes for virulence and antimicrobial resistance are spread in the environment, food samples, or even in farm and wild animals.

... more about:
»Clinical »antibiotic »dangerous »resistance

"Our chips have already been used very successfully in a survey of microbial resistance in human clinical isolates, foods, farm animals and also in wild animals, where we were looking at them as possible reservoirs of infection which can transmit disease back into farm animals", says Dr Anjum.

The miniaturised microarray chips were developed by studying and identifying the dangerous genes from samples of gut bacteria including the diarrhoea-causing E. coli bacteria and the food poisoning bug Salmonella.

In a test of the new chip screening technique, the most common antibiotic resistance gene was identified in 90% of E. coli and 56% of Salmonella bacteria from a random group of animal and human clinical samples. The tests even identified some unique and previously unknown combinations of virulence genes, whose significance still needs to be determined.

"In the near future, we are planning to automate the method to enable each sample to be tested for up to 600 genes and for 96 samples to be processed in half a day", says Dr Muna Anjum. "This will allow large scale monitoring of bacterial pathogens to see how they gain and lose genes related to disease and its control".

This technology will also allow scientists to search for and identify important genes from other pathogens and bacteria, for instance genes which may be commercially important in industrial processes such as waste handling, plastics production, manufacturing, food processing or pharmaceutical development.

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk
http://www.sgm.ac.uk/meetings/MTGPAGES/Edinburgh07.cfm

Further reports about: Clinical antibiotic dangerous resistance

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>