Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Auto immune response creates barrier to fertility; could be a step in speciation

Plant biologists at the Max Planck Institute of Developmental Biology and the University of North Carolina at Chapel Hill have discovered that an autoimmune response, triggered by a small number of genes, can be a barrier to producing a viable offspring.

Studying Arabidopsis thaliana, sometimes called thale cress, the researchers identified a phenotype that, when paired together from a male and female, produced plants that survived only long enough to produce a few leaves, then died – a phenomenon called hybrid necrosis; literally, death. The dead plants resembled what would result from a mortal infection, despite the absence of a pathogen.

This finding presents a new theory in the development of new species: two plants of the same species fail to reproduce not because of infestation or infection from an outside organism, nor from problems with reproductive organs.

“If two otherwise healthy members of a species cannot produce progeny, they’re on a track toward no longer being members of the same species,” said Jeff Dangl, Ph.D., John N. Couch professor of biology, microbiology and immunology and associate director of the Carolina Center for Genome Sciences. “This could be a very early event in what will, over time, lead to speciation.”

... more about:
»HYBRID »immune »species

The study appears in the Sept. 4, 2007, issue of PLoS Biology.

The initial finding was serendipitous, Dangl said. Detlef Weigel, at Max Planck, shared with Dangl some photos of Arabidopsis hybrids from a project by Kirsten Bomblies, a postdoctoral fellow in Weigel’s lab that was meant to study the timing of flowering..

“I said, ‘those look just like autoimmune mutants,’” Dangl recalled.

Bomblies, Weigel and others at Max Planck crossed 280 genetically different strains of Arabidopsis from around the world into 881 different combinations: 2 percent of these crosses gave necrotic offspring. They all had similar gene expression profiles, a group of about 1,000 genes that would typically be expressed as during immune response following infection, or by autoimmune mutants.

Moreover, further analysis revealed that the parents carried healthy genes; their necrotic offspring were not results of genetic disorders. They were the result of a “bad luck” pairing of genetic variants for genes that are normally used to recognize pathogen attack, Dangl said.

“A normal immune system function can give rise to incompatibility in the next generation,” Dangl said. And if studies move beyond plants, “I predict it will be the same in animals.”

Dangl suggested that the necrotic plant is possibly analogous to a fertilized egg that fails to implant in the uterus. Infertility in couples might be explained by analogous auto-immune genetic profile. “How many couples can’t produce progeny, but when they separate and find another mate, they do"”

The study showed “why basic research is so vital,” said Dangl, who was elected into the National Academy of Sciences earlier this year. “This was non-outcome oriented research. If we had set out to study hybrid reproduction we would not have found this fascinating system.”

Clinton Colmenares | EurekAlert!
Further information:

Further reports about: HYBRID immune species

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>