Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice stressed in simulated weightlessness show organ atrophy

04.09.2007
Rutgers researchers track osteopontin-dependent changes in thymus and spleen

A ground-based, experimental model used to simulate astronaut weightlessness in space has provided Rutgers scientists an opportunity to study the effects of stress on immune organs.

Earlier collaborative research with Japanese scientists employing this model implicated the protein osteopontin (OPN) in bone mineral loss associated with simulated weightlessness in mice. This research was made possible by the creation at Rutgers of a mouse unable to make OPN (a “knock-out” mouse). Studies with this Rutgers mouse have demonstrated that OPN likely plays a role in a variety of human problems including cancer metastasis, multiple sclerosis and other autoimmune diseases, osteoporosis and certain inflammatory responses.

The new study, which also simulated weightlessness, demonstrated that OPN is required for the atrophy of immune organs brought on by the stress resulting from hindlimb unloading – a technique employed to simulate weightless conditions by lifting the animal’s body weight off its hind legs. Results are presented Sept. 3 online in the Proceedings of the National Academy of Sciences (PNAS) and in the Sept. 11 print issue.

... more about:
»Condition »OPN »Thymus »atrophy »bone loss »simulated

“The bone loss seen in astronauts or bedridden patients is not a stress issue,” explained David Denhardt, a professor in the Department of Cell Biology and Neuroscience at Rutgers, The State University of New Jersey. “They are experiencing a loss of weight bearing on the bones, and the loss of bone mineral is a direct result of this load reduction.”

The presence of OPN, a feature common to both the bone loss and the organ atrophy, is produced by two different causes – weightlessness and stress – coincidentally related to the same laboratory conditions.

OPN is the continuing focus of Denhardt’s research interests. His long-term goal is to develop an OPN antibody – a monoclonal or target-specific antibody – that will inhibit OPN function in lab mice, and ultimately, in humans. This antibody could prove useful in treating the many destructive diseases associated with OPN.

Denhardt’s graduate student Kathryn Wang, a co-author on the PNAS paper, had previously conducted experiments in which the mouse was positioned in such a way as to produce hind limb unloading. This simulated weightless condition produced OPN-dependent bone loss in the hind limbs and provided a potential testing ground for possible OPN antibodies. The specialized equipment for that experiment was supplied by another co-author on the paper, Yufang Shi, a professor in the Department of Molecular Genetics, Microbiology and Immunology at Robert Wood Johnson Medical School–University of Medicine and Dentistry of New Jersey.

Shi, an authority on stress, suggested that along with the bone loss studies, the Rutgers researchers should look at the spleen and thymus – the organs responsible for most of the animal’s immune cells. If stress affects the spleen and thymus so that they atrophy, the immune system becomes impaired. People under severe stress often get sick.

The Rutgers scientists took their colleague’s advice and compared the OPN-deficient knock-out mice to normal mice, with some dramatic results.

“To our astonishment and surprise, the OPN-deficient animals responded differently to the stress than the normal controls,” Denhardt said. “We had no basis to expect this, but the spleen and thymus of the OPN-deficient animals remained normal whereas there was atrophy of the spleen and thymus in the normal controls. This was a novel and totally unexpected result for which we have no explanation at this time. The next phase of our research will ask what exactly is going on.”

The stressed normal mice also displayed elevated levels of corticosterone – a hormone known to induce apoptosis (programmed cell death), a process evident in the spleen and thymus of these mice and a possible mechanism underlying the atrophy.

Denhardt said that their results indicate that OPN needs to be present for these stress related symptoms to occur, pointing to a whole new physiological realm in which the culprit osteopontin is causing problems.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Condition OPN Thymus atrophy bone loss simulated

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>