Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice stressed in simulated weightlessness show organ atrophy

04.09.2007
Rutgers researchers track osteopontin-dependent changes in thymus and spleen

A ground-based, experimental model used to simulate astronaut weightlessness in space has provided Rutgers scientists an opportunity to study the effects of stress on immune organs.

Earlier collaborative research with Japanese scientists employing this model implicated the protein osteopontin (OPN) in bone mineral loss associated with simulated weightlessness in mice. This research was made possible by the creation at Rutgers of a mouse unable to make OPN (a “knock-out” mouse). Studies with this Rutgers mouse have demonstrated that OPN likely plays a role in a variety of human problems including cancer metastasis, multiple sclerosis and other autoimmune diseases, osteoporosis and certain inflammatory responses.

The new study, which also simulated weightlessness, demonstrated that OPN is required for the atrophy of immune organs brought on by the stress resulting from hindlimb unloading – a technique employed to simulate weightless conditions by lifting the animal’s body weight off its hind legs. Results are presented Sept. 3 online in the Proceedings of the National Academy of Sciences (PNAS) and in the Sept. 11 print issue.

... more about:
»Condition »OPN »Thymus »atrophy »bone loss »simulated

“The bone loss seen in astronauts or bedridden patients is not a stress issue,” explained David Denhardt, a professor in the Department of Cell Biology and Neuroscience at Rutgers, The State University of New Jersey. “They are experiencing a loss of weight bearing on the bones, and the loss of bone mineral is a direct result of this load reduction.”

The presence of OPN, a feature common to both the bone loss and the organ atrophy, is produced by two different causes – weightlessness and stress – coincidentally related to the same laboratory conditions.

OPN is the continuing focus of Denhardt’s research interests. His long-term goal is to develop an OPN antibody – a monoclonal or target-specific antibody – that will inhibit OPN function in lab mice, and ultimately, in humans. This antibody could prove useful in treating the many destructive diseases associated with OPN.

Denhardt’s graduate student Kathryn Wang, a co-author on the PNAS paper, had previously conducted experiments in which the mouse was positioned in such a way as to produce hind limb unloading. This simulated weightless condition produced OPN-dependent bone loss in the hind limbs and provided a potential testing ground for possible OPN antibodies. The specialized equipment for that experiment was supplied by another co-author on the paper, Yufang Shi, a professor in the Department of Molecular Genetics, Microbiology and Immunology at Robert Wood Johnson Medical School–University of Medicine and Dentistry of New Jersey.

Shi, an authority on stress, suggested that along with the bone loss studies, the Rutgers researchers should look at the spleen and thymus – the organs responsible for most of the animal’s immune cells. If stress affects the spleen and thymus so that they atrophy, the immune system becomes impaired. People under severe stress often get sick.

The Rutgers scientists took their colleague’s advice and compared the OPN-deficient knock-out mice to normal mice, with some dramatic results.

“To our astonishment and surprise, the OPN-deficient animals responded differently to the stress than the normal controls,” Denhardt said. “We had no basis to expect this, but the spleen and thymus of the OPN-deficient animals remained normal whereas there was atrophy of the spleen and thymus in the normal controls. This was a novel and totally unexpected result for which we have no explanation at this time. The next phase of our research will ask what exactly is going on.”

The stressed normal mice also displayed elevated levels of corticosterone – a hormone known to induce apoptosis (programmed cell death), a process evident in the spleen and thymus of these mice and a possible mechanism underlying the atrophy.

Denhardt said that their results indicate that OPN needs to be present for these stress related symptoms to occur, pointing to a whole new physiological realm in which the culprit osteopontin is causing problems.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Condition OPN Thymus atrophy bone loss simulated

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>