Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice stressed in simulated weightlessness show organ atrophy

04.09.2007
Rutgers researchers track osteopontin-dependent changes in thymus and spleen

A ground-based, experimental model used to simulate astronaut weightlessness in space has provided Rutgers scientists an opportunity to study the effects of stress on immune organs.

Earlier collaborative research with Japanese scientists employing this model implicated the protein osteopontin (OPN) in bone mineral loss associated with simulated weightlessness in mice. This research was made possible by the creation at Rutgers of a mouse unable to make OPN (a “knock-out” mouse). Studies with this Rutgers mouse have demonstrated that OPN likely plays a role in a variety of human problems including cancer metastasis, multiple sclerosis and other autoimmune diseases, osteoporosis and certain inflammatory responses.

The new study, which also simulated weightlessness, demonstrated that OPN is required for the atrophy of immune organs brought on by the stress resulting from hindlimb unloading – a technique employed to simulate weightless conditions by lifting the animal’s body weight off its hind legs. Results are presented Sept. 3 online in the Proceedings of the National Academy of Sciences (PNAS) and in the Sept. 11 print issue.

... more about:
»Condition »OPN »Thymus »atrophy »bone loss »simulated

“The bone loss seen in astronauts or bedridden patients is not a stress issue,” explained David Denhardt, a professor in the Department of Cell Biology and Neuroscience at Rutgers, The State University of New Jersey. “They are experiencing a loss of weight bearing on the bones, and the loss of bone mineral is a direct result of this load reduction.”

The presence of OPN, a feature common to both the bone loss and the organ atrophy, is produced by two different causes – weightlessness and stress – coincidentally related to the same laboratory conditions.

OPN is the continuing focus of Denhardt’s research interests. His long-term goal is to develop an OPN antibody – a monoclonal or target-specific antibody – that will inhibit OPN function in lab mice, and ultimately, in humans. This antibody could prove useful in treating the many destructive diseases associated with OPN.

Denhardt’s graduate student Kathryn Wang, a co-author on the PNAS paper, had previously conducted experiments in which the mouse was positioned in such a way as to produce hind limb unloading. This simulated weightless condition produced OPN-dependent bone loss in the hind limbs and provided a potential testing ground for possible OPN antibodies. The specialized equipment for that experiment was supplied by another co-author on the paper, Yufang Shi, a professor in the Department of Molecular Genetics, Microbiology and Immunology at Robert Wood Johnson Medical School–University of Medicine and Dentistry of New Jersey.

Shi, an authority on stress, suggested that along with the bone loss studies, the Rutgers researchers should look at the spleen and thymus – the organs responsible for most of the animal’s immune cells. If stress affects the spleen and thymus so that they atrophy, the immune system becomes impaired. People under severe stress often get sick.

The Rutgers scientists took their colleague’s advice and compared the OPN-deficient knock-out mice to normal mice, with some dramatic results.

“To our astonishment and surprise, the OPN-deficient animals responded differently to the stress than the normal controls,” Denhardt said. “We had no basis to expect this, but the spleen and thymus of the OPN-deficient animals remained normal whereas there was atrophy of the spleen and thymus in the normal controls. This was a novel and totally unexpected result for which we have no explanation at this time. The next phase of our research will ask what exactly is going on.”

The stressed normal mice also displayed elevated levels of corticosterone – a hormone known to induce apoptosis (programmed cell death), a process evident in the spleen and thymus of these mice and a possible mechanism underlying the atrophy.

Denhardt said that their results indicate that OPN needs to be present for these stress related symptoms to occur, pointing to a whole new physiological realm in which the culprit osteopontin is causing problems.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Condition OPN Thymus atrophy bone loss simulated

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>