Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A drug-sensitive 'traffic cop' tells potassium channels to get lost

04.09.2007
Our brains are buzzing with electrical activity created by sodium and potassium ions moving in and out of neurons through specialized pores. To prevent the constant chatter from descending into chaos the activity of these ion channels has to be tightly regulated.

One possibility is to issue the channels a ticket straight to the cellular dumpster, discovered researchers at the Salk Institute for Biological Studies. A novel intracellular traffic coordinator pulls potassium channels from their job and whisks them to the recycling plant when not needed to put a damper on brain cells’ excitability, they report in the September issue of Nature Neuroscience.

“Neurons have the task of integrating many incoming signals from other neurons and must strictly regulate their intrinsic membrane excitability,” says Paul A. Slesinger, Ph.D., an associate professor in the Peptide Biology Laboratory at the Salk Institute who led the study. “Controlling the surface expression of ion channels with the help of trafficking molecules is a very efficient way to do it,” he adds.

Brain cells signal by sending electrical impulses along their axons, long, hair-like extensions that reach out to neighboring nerve cells. They make contact via specialized structures called synapses, from the Greek word meaning “to clasp together.” When an electrical signal reaches the end of an axon, the voltage change triggers the release of neurotransmitters, the brain’s chemical messengers.

... more about:
»GIRK »Membrane »SNX27 »Slesinger »neurons »potassium »trafficking

These neurotransmitter molecules then travel across the space between neurons and set off an electrical signal in the adjacent cell — unless the receiving end is decorated with so called GIRK channels, that is. In response to incoming signals, these channels open up, creating many little “potassium leaks” and as a result the signal fizzles.

GIRK channels (short for G-protein-coupled inwardly rectifying potassium channels) – a subtype of the many different potassium channels in the brain – are widely distributed in the brain and regulate neuron-to-neuron communication. Research from the Slesinger lab discovered previously a role for GIRK channels in regulating the response to illicit drugs and alcohol.

Now, using a proteomics approach, Slesinger and his team searched for proteins that might regulate the activity of GIRK3 channels and found SNX27. “We knew that the GIRK3 subtype has a unique code on its tail, like a signpost, that might interact with other proteins” says Slesinger.

SNX27 is a member of the sorting nexin-family, a diverse group of proteins that can bind cellular membranes and make contact with other proteins, which testifies to their role as facilitators for membrane trafficking and protein sorting. Indeed, increasing SNX27 protein in cells led to reduced GIRK activity. A closer look revealed that SNX27 colocalizes with GIRK channels in the hippocampus, a structure that plays an important role in learning and memory.

“The expression of different types of GIRK channel subunits in neurons along with varying levels of specific trafficking proteins, such as SNX27, could dictate the ultimate expression levels on the surface of the plasma membrane, and therefore the strength of inhibitory signaling in the brain,” says Slesinger.

Interestingly, independent researchers found previously that abused drugs such as cocaine and methamphetamine increase the activity of the SNX27 gene in rats. “Changes in the expression of SNX27 may establish an important link between trafficking of GIRK channels and the action of drugs in the brain, possibly opening up new avenues for the treatment of drug addictions,” says Slesinger.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: GIRK Membrane SNX27 Slesinger neurons potassium trafficking

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>