Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A drug-sensitive 'traffic cop' tells potassium channels to get lost

04.09.2007
Our brains are buzzing with electrical activity created by sodium and potassium ions moving in and out of neurons through specialized pores. To prevent the constant chatter from descending into chaos the activity of these ion channels has to be tightly regulated.

One possibility is to issue the channels a ticket straight to the cellular dumpster, discovered researchers at the Salk Institute for Biological Studies. A novel intracellular traffic coordinator pulls potassium channels from their job and whisks them to the recycling plant when not needed to put a damper on brain cells’ excitability, they report in the September issue of Nature Neuroscience.

“Neurons have the task of integrating many incoming signals from other neurons and must strictly regulate their intrinsic membrane excitability,” says Paul A. Slesinger, Ph.D., an associate professor in the Peptide Biology Laboratory at the Salk Institute who led the study. “Controlling the surface expression of ion channels with the help of trafficking molecules is a very efficient way to do it,” he adds.

Brain cells signal by sending electrical impulses along their axons, long, hair-like extensions that reach out to neighboring nerve cells. They make contact via specialized structures called synapses, from the Greek word meaning “to clasp together.” When an electrical signal reaches the end of an axon, the voltage change triggers the release of neurotransmitters, the brain’s chemical messengers.

... more about:
»GIRK »Membrane »SNX27 »Slesinger »neurons »potassium »trafficking

These neurotransmitter molecules then travel across the space between neurons and set off an electrical signal in the adjacent cell — unless the receiving end is decorated with so called GIRK channels, that is. In response to incoming signals, these channels open up, creating many little “potassium leaks” and as a result the signal fizzles.

GIRK channels (short for G-protein-coupled inwardly rectifying potassium channels) – a subtype of the many different potassium channels in the brain – are widely distributed in the brain and regulate neuron-to-neuron communication. Research from the Slesinger lab discovered previously a role for GIRK channels in regulating the response to illicit drugs and alcohol.

Now, using a proteomics approach, Slesinger and his team searched for proteins that might regulate the activity of GIRK3 channels and found SNX27. “We knew that the GIRK3 subtype has a unique code on its tail, like a signpost, that might interact with other proteins” says Slesinger.

SNX27 is a member of the sorting nexin-family, a diverse group of proteins that can bind cellular membranes and make contact with other proteins, which testifies to their role as facilitators for membrane trafficking and protein sorting. Indeed, increasing SNX27 protein in cells led to reduced GIRK activity. A closer look revealed that SNX27 colocalizes with GIRK channels in the hippocampus, a structure that plays an important role in learning and memory.

“The expression of different types of GIRK channel subunits in neurons along with varying levels of specific trafficking proteins, such as SNX27, could dictate the ultimate expression levels on the surface of the plasma membrane, and therefore the strength of inhibitory signaling in the brain,” says Slesinger.

Interestingly, independent researchers found previously that abused drugs such as cocaine and methamphetamine increase the activity of the SNX27 gene in rats. “Changes in the expression of SNX27 may establish an important link between trafficking of GIRK channels and the action of drugs in the brain, possibly opening up new avenues for the treatment of drug addictions,” says Slesinger.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: GIRK Membrane SNX27 Slesinger neurons potassium trafficking

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>