Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A drug-sensitive 'traffic cop' tells potassium channels to get lost

04.09.2007
Our brains are buzzing with electrical activity created by sodium and potassium ions moving in and out of neurons through specialized pores. To prevent the constant chatter from descending into chaos the activity of these ion channels has to be tightly regulated.

One possibility is to issue the channels a ticket straight to the cellular dumpster, discovered researchers at the Salk Institute for Biological Studies. A novel intracellular traffic coordinator pulls potassium channels from their job and whisks them to the recycling plant when not needed to put a damper on brain cells’ excitability, they report in the September issue of Nature Neuroscience.

“Neurons have the task of integrating many incoming signals from other neurons and must strictly regulate their intrinsic membrane excitability,” says Paul A. Slesinger, Ph.D., an associate professor in the Peptide Biology Laboratory at the Salk Institute who led the study. “Controlling the surface expression of ion channels with the help of trafficking molecules is a very efficient way to do it,” he adds.

Brain cells signal by sending electrical impulses along their axons, long, hair-like extensions that reach out to neighboring nerve cells. They make contact via specialized structures called synapses, from the Greek word meaning “to clasp together.” When an electrical signal reaches the end of an axon, the voltage change triggers the release of neurotransmitters, the brain’s chemical messengers.

... more about:
»GIRK »Membrane »SNX27 »Slesinger »neurons »potassium »trafficking

These neurotransmitter molecules then travel across the space between neurons and set off an electrical signal in the adjacent cell — unless the receiving end is decorated with so called GIRK channels, that is. In response to incoming signals, these channels open up, creating many little “potassium leaks” and as a result the signal fizzles.

GIRK channels (short for G-protein-coupled inwardly rectifying potassium channels) – a subtype of the many different potassium channels in the brain – are widely distributed in the brain and regulate neuron-to-neuron communication. Research from the Slesinger lab discovered previously a role for GIRK channels in regulating the response to illicit drugs and alcohol.

Now, using a proteomics approach, Slesinger and his team searched for proteins that might regulate the activity of GIRK3 channels and found SNX27. “We knew that the GIRK3 subtype has a unique code on its tail, like a signpost, that might interact with other proteins” says Slesinger.

SNX27 is a member of the sorting nexin-family, a diverse group of proteins that can bind cellular membranes and make contact with other proteins, which testifies to their role as facilitators for membrane trafficking and protein sorting. Indeed, increasing SNX27 protein in cells led to reduced GIRK activity. A closer look revealed that SNX27 colocalizes with GIRK channels in the hippocampus, a structure that plays an important role in learning and memory.

“The expression of different types of GIRK channel subunits in neurons along with varying levels of specific trafficking proteins, such as SNX27, could dictate the ultimate expression levels on the surface of the plasma membrane, and therefore the strength of inhibitory signaling in the brain,” says Slesinger.

Interestingly, independent researchers found previously that abused drugs such as cocaine and methamphetamine increase the activity of the SNX27 gene in rats. “Changes in the expression of SNX27 may establish an important link between trafficking of GIRK channels and the action of drugs in the brain, possibly opening up new avenues for the treatment of drug addictions,” says Slesinger.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: GIRK Membrane SNX27 Slesinger neurons potassium trafficking

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>