Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma drug revs immune cells but cancer cells ignore it

04.09.2007
A new study shows that an important drug used in the treatment of malignant melanoma has little effect on the melanoma cells themselves. Instead, it activates immune-system cells to fight the disease.

The drug, called interferon alpha (IFNa), is used to clean up microscopic tumor cells that may remain in the body following surgery for the disease. It is the only drug approved for this purpose.

Researchers say that these findings underscore the need to develop ways to make melanoma cells more vulnerable to the drug, or to overcome the block within the cells that prevents them from responding to it.

The study showed that melanoma cells taken directly from patients, as well as those grown in the laboratory, respond poorly to IFNa, even when the drug is given at very high doses, while immune cells respond well to the same substance.

... more about:
»Cancer »IFNa »immune »immune cell »melanoma

The study, led by researchers with the Ohio State University Comprehensive Cancer Center, is published in the journal Clinical Cancer Research.

“IFNa is effective in only 10 to 20 percent of patients, but it's the best therapy available for these patients, and no therapies on the horizon have been proven any more effective,” says principal investigator William E. Carson, III, professor of surgery and a melanoma specialist at Ohio State's James Cancer Hospital and Solove Research Institute.

“It is critical that we understand exactly how this drug works and learn how to improve its effectiveness.”

IFNa is an immune-system hormone made by the body to help other immune cells recognize and destroy developing tumors. As a drug, the substance is used to treat melanoma and other cancers.

Formerly, it was thought that IFNa acted directly on melanoma-tumor cells to stop their growth. But earlier research by Carson's laboratory and others suggested that the drug has a greater effect on the immune system.

“The present study confirms that earlier work,” says first author Gregory B. Lesinski, a research assistant professor in the department of molecular virology, immunology and medical genetics. “The new findings are significant because they confirm that the immune system, and not the tumor cell, is the primary target of IFNa.

“We show for the first time that even normal melanocytes are inherently less responsive to IFNa compared to immune cells.” Melanocytes are the normal cells that, when cancerous, cause melanoma.

“Some unknown factor in melanoma cells seems to turn down their response to IFNa,” Lesinski explains. “We are now trying to understand what that factor might be.”

Funding from the Harry J. Lloyd Charitable Trust, the National Cancer Institute, and The Valvano Foundation for Cancer Research Award supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer IFNa immune immune cell melanoma

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>