Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC health news: molecular pathway may predict chemotherapy effectiveness

04.09.2007
A common molecular pathway could help physicians predict which lung cancer patients will benefit from chemotherapy drugs, according to new research from a multidisciplinary team at the University of Cincinnati (UC).

Known as the retinoblastoma (RB) tumor suppressor, this fundamental molecule regulates cell proliferation in the body. Research has shown that the RB pathway is either entirely inactive or altered in most human cancers. Scientists are beginning to use its actions as a “biomarker” for how tumors will respond to different therapies.

Michael Reed, MD, and his UC colleagues found that “turning off” the RB pathway in lung cancer cells resulted in an altered response to chemotherapy agents and more cancer cell death. They report their findings in the September 2007 issue of the journal Cancer Research.

“Dissecting the RB pathway will help us better understand how chemotherapy works and predict which patients might benefit from therapy and which ones won’t,” explains Reed, assistant professor of surgery at UC and a thoracic surgeon at University Hospital.

... more about:
»Agents »Molecular »chemotherapy »pathway »patients »predict

“As pathways are further defined, we could choose agents that are targeted to an individual tumor’s molecular characteristics,” he adds.

A previous UC study, published in the January 2007 issue of the Journal of Clinical Investigation, showed that when this pathway is disrupted or shut off in breast cancer, the tumor resists anti-estrogen drugs and the cancer continues to grow in spite of the therapy.

For this laboratory study, Reed’s team shut off the RB pathway in human non-small cell lung cancer cells and exposed them to chemotherapy agents representative of those currently used to treat lung cancer patients.

Their results showed that when RB was turned off, the cancer cells continued to divide, but became more susceptible to the drugs, so the tumors stopped growing.

“But the minute you take away the chemotherapy, the cells take off again,” says Reed. “This suggests that it’s not just loss of RB that affects therapy response—it could be changes at various steps in cellular signaling that result in different outcomes.”

“The traditional way of thinking of cancer—one cancer gene to treat and you’re done—is obviously not the best approach to treating this disease,” he adds. “These are complex, overlapping molecular pathways. Dissecting them and determining how to use that information to apply combinations of chemotherapeutic agents will allow for individualization of therapy.”

Next year, Reed and his colleagues expect to begin testing the RB tumor suppressor in human tumor tissue samples from the UC Thoracic Tumor Registry and compare them to patients with known outcomes.

According to the American Cancer Society, more than 213,000 Americans will be diagnosed with lung cancer in 2007. Because most people are diagnosed late, the five-year survival rate is only 14 percent—compared with 86 percent for breast cancer, 61 percent for colon cancer and 96 percent for prostate cancer.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

Further reports about: Agents Molecular chemotherapy pathway patients predict

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>