Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside the Brain of a Crayfish: Mellon Looks at Integration of Dissimilar Senses

04.09.2007
Voyage to the bottom of the sea, or simply look along the bottom of a clear stream and you may spy lobsters or crayfish waving their antennae. Look closer, and you will see them feeling around with their legs and flicking their antennules – the small, paired sets of miniature feelers at the top of their heads between the long antennae.

Both are used for sensing the environment. The long antennae are used for getting a physical feel of an area, such as the contours of a crevice. The smaller antennules are there to both help the creature smell for food or mates or dangerous predators and also to sense motion in the water that also could indicate the presence of food, a fling or danger. The legs also have receptors that detect chemical signatures, preferably those emanating from a nice hunk of dead fish.

“They constantly flick their antennules,” says DeForest Mellon, a University of Virginia biology professor, as he watches a Southern swamp crayfish in a bucket doing just that. “It is doing two things that are processed simultaneously in the brain as he flicks: smelling the water, and also sensing motion in the water, which can indicate the presence of food or other things of interest.

“I’m interested in understanding how these senses are combined and interpreted in the brain of these animals. My question is, how does the brain detect, integrate and use co-joined but dissimilar sensory inputs?”

... more about:
»Environment »Mellon »antennule »creature »sense

It’s much like humans tasting food by a combination of senses that detect taste, aroma, texture and how good that dish of pasta looks. It’s a complex process of brain processing that serves us well in a world of smells, textures, flavors and visual stimuli. It’s not much different with crustaceans, though their brains are much simpler, which makes them a great study model, Mellon says.

Mellon and other neurophysiology researchers commonly use crustaceans to try to gain basic understanding of the nervous systems of creatures in general, and, wherever possible, for extrapolating what they find to a basic understanding of the much more complex human brain. All animals, from single-celled amoebas to humans, use similar cellular processes to interpret their olfactory environment.

“Due to the large-sized nerve cells of invertebrates, we can conveniently and practically examine these systems that are largely the same among all creatures,” Mellon says. “And antennule flicking can serve as a practical model that helps us understand how two or more senses work together in the brain.”

Mellon has been investigating sensory systems for half a century, since his grad school days at Johns Hopkins University. He’s still learning. “We can say we know that animals use their senses to make maps of their environment that direct their behaviors,” he says.

Recently Mellon perused the research in the field – his own and that of many other scientists – of the past 45 years or so and has published a review of the literature in the August 2007 issue of The Biological Bulletin.

What he’s found is that there is still a lot not understood. “It’s fertile ground for ongoing research,” he said. “The size of an area of the brain devoted to a particular sense gives us a good idea of how an animal perceives the world. It provides insight as to how the world is interpreted by that animal.”

About 40 percent of a crustacean’s brain is devoted to the sense of smell. “This shows how important detecting odors is to the animal,” Mellon says. Crayfish and lobsters are generally solitary creatures, inhabiting an aquatic environment that is often dark, and they need that highly acute sense of smell.

Humans, by contrast, have a very small portion of the brain devoted to interpreting smells, less than 1 percent by volume. But about 30 percent of the human brain is concerned with visual processing, interpreting images from the eye, Mellon says. As social animals, humans rely heavily on sight and color for identifying food, as well as friends and foe.

“I have always been fascinated by the diversity of animal types and their equally diverse behaviors,” Mellon says. “Both are genetically based. And through often very subtle adoption of genetic variations in different animals, evolution has arrived at different solutions to common survival problems. This behavioral diversity and the variants in nervous system organization account for why I remain fascinated with biology.”

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

Further reports about: Environment Mellon antennule creature sense

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>