Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene signature spells poor outcome

04.09.2007
Researchers at the Johns Hopkins Kimmel Cancer Center have found a genetic signature for aggressive melanomas.

Other than visually inspecting the disease, doctors have no genetic blueprint to classify melanomas, a lethal form of skin cancer. Tumors generally are ranked by how deeply the growth has invaded underlying skin tissue. The deeper it burrows into the skin, the more lethal the cancer, but some patients defy the odds and survive with thick tumors or die from thin ones.

“Two melanoma patients with cancers of the same invasion depth and appearance under the microscope can have completely different outcomes,” says Rhoda Alani, M.D., associate professor of oncology, dermatology and molecular biology and genetics at Hopkins’ Kimmel Cancer Center.

Alani says the way genes turn their protein-manufacturing machinery on and off in each cancer may help create a signature that can be used to identify tumors that are more prone to kill. These so-called expression patterns can be different from one stage of cancer to the next.

... more about:
»Signature »aggressive »lines »melanoma »outcome

Her research team charted the level of gene expression in melanoma cell lines. Three of the lines mimic the least aggressive type, which grows along the uppermost surface of the skin, called radial growth phase. Four of the cell lines are typical of so-called “vertical growth phase” cancers, which invade inner skin layers, and another three represent the most lethal form -metastatic melanomas.

Two vertical growth phase cell lines had gene expression patterns similar to radial growth cancers, indicating that these cells were less aggressive, according to the scientists. The remaining two vertical growth cell lines contained patterns in 18 genes that paralleled metastatic cancer cell lines, the most aggressive form. Alani and her colleagues believe that within this group of 18 genes is a signature for aggressive melanomas.

Many of the genes described in the Hopkins report, published online on July 4 in PLoS One, were previously identified as associated with aggressive cancers by scientists at Johns Hopkins and elsewhere, but Alani says her study brings them all together for melanoma and links them to an aggressive profile.

Alani’s team is validating these results in human tissue samples and evaluating gene correlations with patient outcomes. Funding for the study was provided by the National Cancer Institute. With further study, the genes could be used in tests that predict a patient’s prognosis and as targets for tailored therapies, she says.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinskimmelcancercenter.org

Further reports about: Signature aggressive lines melanoma outcome

More articles from Life Sciences:

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>