Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a 40-year search, a hormone controlling iron metabolism in mammals is finally identified

04.04.2002


Iron is vital for cells, because it catalyzes key enzyme reactions; it is also crucial for respiration, fixing atmospheric oxygen to hemoglobin in red blood cells. Iron deficiency can lead to severe anemia, with inadequate tissue oxygenation. An excess of iron is also toxic, as it facilitates the generation of free radicals that can attack the liver, heart and pancreas. This is the case in hereditary hemochromatosis, a genetic disorder which, in 80% of cases, is linked to a point mutation in the Hfe-1 gene, leading to excessive iron uptake by the intestinal tract. Hereditary hemochromatosis is very frequent in western countries, affecting one in 300 people. The body has no physiological mechanism for eliminating iron, and the only effective treatment for patients with hereditary hemochromatosis is bleeding, in some cases several times a week. These patients, and their doctors, are eagerly awaiting a breakthrough in our understanding of the mechanisms regulating iron metabolism, that might have therapeutic implications.



Dietary iron enters the body via cells known as enterocytes, that line the intestinal folds. Humoral signals are known to modulate how much iron these cells take up, according to the body`s internal stores. Yet, despite intense research over the last four decades, no-one had previously been able to identify these signals.

It is by chance that Gaël Nicolas, Sophie Vaulont and their coworkers came across such a signal while working on knock-out mice developed in their laboratory. The mice lacked a transcription factor known as USF2 (upstream stimulatory factor 2), thought to be involved in glucose metabolism. To their surprise, the team found that the mice had disorders similar to those of patients with hereditary hemochromatosis, namely premature ageing of the pancreas and liver, which take on an abnormal brown color - a sign of iron accumulation. Further tests indeed showed that the animals had a form of hemochromatosis. Intrigued, the team created a subtractive RNA bank in order to determine whether any other genes were abnormally expressed in their model. This was effectively the case. One abnormally expressed gene was found to correspond to a recently identified sequence of 25 amino acids found in members of an antimicrobial peptide family called the defensins. The peptide in question - hepcidin - is produced by the liver and secreted into the bloodstream. Hepcidin has a degree of antimicrobial activity, but Axel Kahn, Sophie Vaulont and their colleagues at Bichat Hospital in Paris believe that it acts essentially as a true hormone, inhibiting iron uptake by intestinal cells; they also believe that when hepcidin dysfunctions the body has no way of limiting iron absorption into the bloodstream.


To test this hypothesis, the team first checked that iron levels were normal in a transgenic mouse model, produced in another laboratory, that lacks USF2 but has an intact hepcidin gene. Then they went on to create transgenic mice whose livers overproduced hepcidin, expecting them to develop anemia. In the event, almost all the new-born animals were smaller than normal, had very pale skin and no hair, were profoundly anemic, and died within hours of birth - unless they received an injection of iron. (Some animals producing less hepcidin were less severely anemic and survived without treatment.)

This discovery opens up exciting therapeutic and diagnostic perspectives in diseases due to abnormal iron homeostasis. Therefore, a patent application has been filed by INSERM and the inventors. One short-term possibility is a diagnostic test based on serum hepcidin measurement. In the longer term, the development of hepcidin agonists and antagonists may well transform the treatment of these frequent and potentially severe disorders.

Nathalie Christophe | alphagalileo

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>