Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a 40-year search, a hormone controlling iron metabolism in mammals is finally identified

04.04.2002


Iron is vital for cells, because it catalyzes key enzyme reactions; it is also crucial for respiration, fixing atmospheric oxygen to hemoglobin in red blood cells. Iron deficiency can lead to severe anemia, with inadequate tissue oxygenation. An excess of iron is also toxic, as it facilitates the generation of free radicals that can attack the liver, heart and pancreas. This is the case in hereditary hemochromatosis, a genetic disorder which, in 80% of cases, is linked to a point mutation in the Hfe-1 gene, leading to excessive iron uptake by the intestinal tract. Hereditary hemochromatosis is very frequent in western countries, affecting one in 300 people. The body has no physiological mechanism for eliminating iron, and the only effective treatment for patients with hereditary hemochromatosis is bleeding, in some cases several times a week. These patients, and their doctors, are eagerly awaiting a breakthrough in our understanding of the mechanisms regulating iron metabolism, that might have therapeutic implications.



Dietary iron enters the body via cells known as enterocytes, that line the intestinal folds. Humoral signals are known to modulate how much iron these cells take up, according to the body`s internal stores. Yet, despite intense research over the last four decades, no-one had previously been able to identify these signals.

It is by chance that Gaël Nicolas, Sophie Vaulont and their coworkers came across such a signal while working on knock-out mice developed in their laboratory. The mice lacked a transcription factor known as USF2 (upstream stimulatory factor 2), thought to be involved in glucose metabolism. To their surprise, the team found that the mice had disorders similar to those of patients with hereditary hemochromatosis, namely premature ageing of the pancreas and liver, which take on an abnormal brown color - a sign of iron accumulation. Further tests indeed showed that the animals had a form of hemochromatosis. Intrigued, the team created a subtractive RNA bank in order to determine whether any other genes were abnormally expressed in their model. This was effectively the case. One abnormally expressed gene was found to correspond to a recently identified sequence of 25 amino acids found in members of an antimicrobial peptide family called the defensins. The peptide in question - hepcidin - is produced by the liver and secreted into the bloodstream. Hepcidin has a degree of antimicrobial activity, but Axel Kahn, Sophie Vaulont and their colleagues at Bichat Hospital in Paris believe that it acts essentially as a true hormone, inhibiting iron uptake by intestinal cells; they also believe that when hepcidin dysfunctions the body has no way of limiting iron absorption into the bloodstream.


To test this hypothesis, the team first checked that iron levels were normal in a transgenic mouse model, produced in another laboratory, that lacks USF2 but has an intact hepcidin gene. Then they went on to create transgenic mice whose livers overproduced hepcidin, expecting them to develop anemia. In the event, almost all the new-born animals were smaller than normal, had very pale skin and no hair, were profoundly anemic, and died within hours of birth - unless they received an injection of iron. (Some animals producing less hepcidin were less severely anemic and survived without treatment.)

This discovery opens up exciting therapeutic and diagnostic perspectives in diseases due to abnormal iron homeostasis. Therefore, a patent application has been filed by INSERM and the inventors. One short-term possibility is a diagnostic test based on serum hepcidin measurement. In the longer term, the development of hepcidin agonists and antagonists may well transform the treatment of these frequent and potentially severe disorders.

Nathalie Christophe | alphagalileo

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>