Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a 40-year search, a hormone controlling iron metabolism in mammals is finally identified

04.04.2002


Iron is vital for cells, because it catalyzes key enzyme reactions; it is also crucial for respiration, fixing atmospheric oxygen to hemoglobin in red blood cells. Iron deficiency can lead to severe anemia, with inadequate tissue oxygenation. An excess of iron is also toxic, as it facilitates the generation of free radicals that can attack the liver, heart and pancreas. This is the case in hereditary hemochromatosis, a genetic disorder which, in 80% of cases, is linked to a point mutation in the Hfe-1 gene, leading to excessive iron uptake by the intestinal tract. Hereditary hemochromatosis is very frequent in western countries, affecting one in 300 people. The body has no physiological mechanism for eliminating iron, and the only effective treatment for patients with hereditary hemochromatosis is bleeding, in some cases several times a week. These patients, and their doctors, are eagerly awaiting a breakthrough in our understanding of the mechanisms regulating iron metabolism, that might have therapeutic implications.



Dietary iron enters the body via cells known as enterocytes, that line the intestinal folds. Humoral signals are known to modulate how much iron these cells take up, according to the body`s internal stores. Yet, despite intense research over the last four decades, no-one had previously been able to identify these signals.

It is by chance that Gaël Nicolas, Sophie Vaulont and their coworkers came across such a signal while working on knock-out mice developed in their laboratory. The mice lacked a transcription factor known as USF2 (upstream stimulatory factor 2), thought to be involved in glucose metabolism. To their surprise, the team found that the mice had disorders similar to those of patients with hereditary hemochromatosis, namely premature ageing of the pancreas and liver, which take on an abnormal brown color - a sign of iron accumulation. Further tests indeed showed that the animals had a form of hemochromatosis. Intrigued, the team created a subtractive RNA bank in order to determine whether any other genes were abnormally expressed in their model. This was effectively the case. One abnormally expressed gene was found to correspond to a recently identified sequence of 25 amino acids found in members of an antimicrobial peptide family called the defensins. The peptide in question - hepcidin - is produced by the liver and secreted into the bloodstream. Hepcidin has a degree of antimicrobial activity, but Axel Kahn, Sophie Vaulont and their colleagues at Bichat Hospital in Paris believe that it acts essentially as a true hormone, inhibiting iron uptake by intestinal cells; they also believe that when hepcidin dysfunctions the body has no way of limiting iron absorption into the bloodstream.


To test this hypothesis, the team first checked that iron levels were normal in a transgenic mouse model, produced in another laboratory, that lacks USF2 but has an intact hepcidin gene. Then they went on to create transgenic mice whose livers overproduced hepcidin, expecting them to develop anemia. In the event, almost all the new-born animals were smaller than normal, had very pale skin and no hair, were profoundly anemic, and died within hours of birth - unless they received an injection of iron. (Some animals producing less hepcidin were less severely anemic and survived without treatment.)

This discovery opens up exciting therapeutic and diagnostic perspectives in diseases due to abnormal iron homeostasis. Therefore, a patent application has been filed by INSERM and the inventors. One short-term possibility is a diagnostic test based on serum hepcidin measurement. In the longer term, the development of hepcidin agonists and antagonists may well transform the treatment of these frequent and potentially severe disorders.

Nathalie Christophe | alphagalileo

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>