Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental anti-cancer drug made from corn lillies kills brain tumor stem cells

03.09.2007
A drug that shuts down a critical cell-signaling pathway in the most common and aggressive type of adult brain cancer successfully kills cancer stem cells thought to fuel tumor growth and help cancers evade drug and radiation therapy, a Johns Hopkins study shows.

In a series of laboratory and animal experiments, Johns Hopkins scientists blocked the signaling system, known as Hedgehog, with an experimental compound called cyclopamine to explore the blockade’s effect on cancer stem cells that populate glioblastoma multiforme. Cyclopamine has long been known to inhibit Hedgehog signaling.

They reported their findings in the journal Stem Cells published online on July 19.

“Our study lends evidence to the idea that the lack of effective therapies for glioblastoma may be due to the survival of a rare population of cancer stem cells that appear immune to conventional radiation and chemotherapy,” says Charles G. Eberhart, M.D., Ph.D., associate professor of pathology, ophthalmology and oncology, who led the work. “Hedgehog inhibition kills these cancer stem cells and prevents cancer from growing and may thus develop into the first stem cell-directed therapy for glioblastoma.”

Eberhart cautioned that while his study appears to prove the principle of Hedgehog blocking, much work remains before cyclopamine or any similar drug can be tested in patients. Scientists must determine whether the drug can be effectively and safely delivered to the whole body or whether it must go into the brain, and what if any adverse impact on normal stem cells the treatment might cause.

“Once you’ve answered those questions in animals, the next step would be starting phase I clinical trials in humans,” Eberhart said.

The new study adds to the growing evidence that only a small percentage of cancer cells - in this case stem cells - are capable of unlimited self-renewal and that these cells alone power a tumor’s growth.

Eberhart focused on two pathways important to the survival of normal brain stem cells-Hedgehog and Notch-suspecting that brain cancer stem cells cannot live without them.

The Hedgehog gene, first studied in fruit flies, got its name because during embryonic development, the mutated version causes flies to resemble a spiky hedgehog. The pathway plays a major role in controlling normal fetal and postnatal development, and, later in life, helping normal adult stem cells function and proliferate.

The Johns Hopkins scientists first tested 19 human glioblastomas removed during surgery and frozen immediately, and found Hedgehog active in five at the time of tumor removal. They also found Hedgehog activity in four of seven glioblastoma cell lines.

Next, the team used cyclopamine, chemically extracted from corn lilies that grow in the Rocky Mountains, to inhibit Hedgehog in cells lines growing on plastic or as neurospheres, round clusters of stems cells that float in liquid nutrients. This reduced tumor growth in the cell-laden plastic by 40 to 60 percent, and caused the neurospheres to fall apart without any new growth of the cell clusters.

The researchers also pretreated mice with cyclopamine before injecting human glioblastoma cells into their brains, resulting in cancer cells that failed to form tumors in the mice.

Other researchers have shown that radiotherapy fails to kill all cancer stem cells in glioblastomas, apparently because many of these cells can repair the DNA damage inflicted by radiation. The Hopkins team suggests that blocking the Hedgehog pathway with cyclopamine kills these radiation-resistant cancer stem cells.

In previous laboratory experiments, Eberhart used cyclopamine to block Hedgehog using medulloblastoma cells, the most common brain cancer occurring in children.

Along with childhood brain cancers, cyclopamine has shown early promise in treating skin cancer; rhabdomyosarcoma, a muscle tumor; and multiple myeloma, a cancer of the white blood cells in bone marrow.

“What excites me is that we have taken things we learned about Hedgehog signaling in these relatively rare childhood brain tumors and translated them into an even more aggressive adult tumor,” Eberhart said.

More than 10,000 Americans die annually from glioblastomas. Radiation is the standard therapy for the disease, and several years ago, the U.S. Food and Drug Administration approved adding the drug temozolomide to radiotherapy because the combination provided a small survival increase.

“This is an incredibly difficult tumor to treat,” says first author Eli E. Bar, Ph.D., a postdoctoral fellow. “Survival for glioblastoma has not changed much in 30 years. With the addition of temozolomide, survival got bumped from 12 months to 14 or 15 months.”

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Eberhart Glioblastoma Stem cyclopamine pathway stem cells survival

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>