Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cancer spreads by aggregating platelets

03.09.2007
Scientists have provided new details about how cancer cells spread by surrounding themselves with platelets – the blood cells needed for blood clotting.

Katsue Suzuki-Inoue, Associate Professor of Medicine at the University of Yamanashi, Japan, and colleagues have identified for the first time a protein on the surface of platelets that plays a key role in cancer-induced platelet aggregation. These results could help design new drugs that prevent cancer cells from metastasizing, or spreading throughout the body.

“In order to spread, cancer cells release chemicals that make neighboring platelets aggregate and surround the cancer cells, helping them evade the immune system and allowing them to bind to the blood vessels’ inner linings,” Suzuki-Inoue says. “We have discovered how one of these chemicals, called podoplanin, binds to the platelet cells and stimulate their aggregation. Although podoplanin has been known since 1990, how it induces platelet cell aggregation has been a mystery – until now.”

The new study, to be published in the September 7 issue of the Journal of Biological Chemistry, was selected as a “Paper of the Week” by the journal’s editors, meaning that it belongs to the top one percent of papers reviewed in significance and overall importance.

Suzuki-Inoue and colleagues had previously discovered that the snake venom rhodocytin stimulates platelet aggregation by binding to a protein called C-type lectin-like receptor 2 (CLEC-2) located on the surface of the platelets in a way similar to a key (rhodocytin) binding to a lock (CLEC-2).

By studying the details of what happens inside these platelets before and during aggregation, the scientists noticed many similarities with the way platelets aggregate when they are induced by podoplanin from cancer cells. Whether stimulated by rhodocytin or podoplanin, the platelets are slow to aggregate at first and, after they start aggregating, the proteins that are activated inside the platelets are similar in both cases.

Suzuki-Inoue and her team reasoned that maybe CLEC-2 binds not only to rhodocytin but also to podoplanin. The scientists tested this hypothesis by first growing CLEC-2 in culture and then by adding them to cultured cells expressing podoplanin. The hypothesis was confirmed: CLEC-2 and podoplanin bound to each other in the same lock-and-key mechanism displayed by CLEC-2 and rhodocytin.

“We were pleasantly surprised,” Suzuki-Inuoue says. “After all these years, we finally found the long-missing protein to which podoplanin binds to promote platelet aggregation.”

The scientists confirmed their findings by mixing podoplanin-expressing cells with platelet cells genetically altered so that the CLEC-2 on their surface could not bind to podoplanin. Platelet aggregation was completely inhibited, confirming that CLEC-2 was the protein necessary for podoplanin-induced platelet aggregation.

This result also suggested that it may be possible to prevent cancer cells from stimulating platelet aggregation – and thus allow the cancer cells to metastasize – by blocking the interaction between CLEC-2 and podoplanin.

“Our study clearly shows that podoplanin on the surface of tumor cells induces platelet aggregation by interacting with CLEC-2 on the surface of platelet cells,” Suzuki-Inuoue says. “Preventing CLEC-2 and podoplanin from binding to each other may be a good therapeutic way of preventing tumor metastasis.”

The role of podoplanin-CLEC-2 interaction may not be limited to tumor metastasis, the scientists note. When podoplanin and CLEC-2 bind to each other, not only do platelets aggregate, but they also release chemicals that may form new blood vessels which, in turn, provide the tumor with the nutrients and oxygen it needs to grow. As a result, locking the podoplanin-CLEC-2 interaction may not only prevent cancer metastasis but also limit the growth of cancer cells, Suzuki-Inuoue says.

The researchers also found that podoplanin present within lymphatic vessels – which carry plasma and white blood cells – also induces platelet aggregation, showing that a better understanding of how podoplanin and CLEC-2 bind together may provide information on how lymphatic vessels form and work.

Suzuki-Inuoue and colleagues are now trying to develop antibodies that look like CLEC-2 and that can bind to podoplanin, preventing it from attaching to platelet cells. The scientists are also investigating the role of the podoplanin-CLEC-2 interaction in the formation of blood clots and the development of lymphatic vessels.

Pat Pages | EurekAlert!
Further information:
http://www.asbmb.org

Further reports about: Aggregation CLEC-2 Interaction Surface Vessels aggregate blood vessel platelet podoplanin rhodocytin

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>