Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cancer spreads by aggregating platelets

03.09.2007
Scientists have provided new details about how cancer cells spread by surrounding themselves with platelets – the blood cells needed for blood clotting.

Katsue Suzuki-Inoue, Associate Professor of Medicine at the University of Yamanashi, Japan, and colleagues have identified for the first time a protein on the surface of platelets that plays a key role in cancer-induced platelet aggregation. These results could help design new drugs that prevent cancer cells from metastasizing, or spreading throughout the body.

“In order to spread, cancer cells release chemicals that make neighboring platelets aggregate and surround the cancer cells, helping them evade the immune system and allowing them to bind to the blood vessels’ inner linings,” Suzuki-Inoue says. “We have discovered how one of these chemicals, called podoplanin, binds to the platelet cells and stimulate their aggregation. Although podoplanin has been known since 1990, how it induces platelet cell aggregation has been a mystery – until now.”

The new study, to be published in the September 7 issue of the Journal of Biological Chemistry, was selected as a “Paper of the Week” by the journal’s editors, meaning that it belongs to the top one percent of papers reviewed in significance and overall importance.

Suzuki-Inoue and colleagues had previously discovered that the snake venom rhodocytin stimulates platelet aggregation by binding to a protein called C-type lectin-like receptor 2 (CLEC-2) located on the surface of the platelets in a way similar to a key (rhodocytin) binding to a lock (CLEC-2).

By studying the details of what happens inside these platelets before and during aggregation, the scientists noticed many similarities with the way platelets aggregate when they are induced by podoplanin from cancer cells. Whether stimulated by rhodocytin or podoplanin, the platelets are slow to aggregate at first and, after they start aggregating, the proteins that are activated inside the platelets are similar in both cases.

Suzuki-Inoue and her team reasoned that maybe CLEC-2 binds not only to rhodocytin but also to podoplanin. The scientists tested this hypothesis by first growing CLEC-2 in culture and then by adding them to cultured cells expressing podoplanin. The hypothesis was confirmed: CLEC-2 and podoplanin bound to each other in the same lock-and-key mechanism displayed by CLEC-2 and rhodocytin.

“We were pleasantly surprised,” Suzuki-Inuoue says. “After all these years, we finally found the long-missing protein to which podoplanin binds to promote platelet aggregation.”

The scientists confirmed their findings by mixing podoplanin-expressing cells with platelet cells genetically altered so that the CLEC-2 on their surface could not bind to podoplanin. Platelet aggregation was completely inhibited, confirming that CLEC-2 was the protein necessary for podoplanin-induced platelet aggregation.

This result also suggested that it may be possible to prevent cancer cells from stimulating platelet aggregation – and thus allow the cancer cells to metastasize – by blocking the interaction between CLEC-2 and podoplanin.

“Our study clearly shows that podoplanin on the surface of tumor cells induces platelet aggregation by interacting with CLEC-2 on the surface of platelet cells,” Suzuki-Inuoue says. “Preventing CLEC-2 and podoplanin from binding to each other may be a good therapeutic way of preventing tumor metastasis.”

The role of podoplanin-CLEC-2 interaction may not be limited to tumor metastasis, the scientists note. When podoplanin and CLEC-2 bind to each other, not only do platelets aggregate, but they also release chemicals that may form new blood vessels which, in turn, provide the tumor with the nutrients and oxygen it needs to grow. As a result, locking the podoplanin-CLEC-2 interaction may not only prevent cancer metastasis but also limit the growth of cancer cells, Suzuki-Inuoue says.

The researchers also found that podoplanin present within lymphatic vessels – which carry plasma and white blood cells – also induces platelet aggregation, showing that a better understanding of how podoplanin and CLEC-2 bind together may provide information on how lymphatic vessels form and work.

Suzuki-Inuoue and colleagues are now trying to develop antibodies that look like CLEC-2 and that can bind to podoplanin, preventing it from attaching to platelet cells. The scientists are also investigating the role of the podoplanin-CLEC-2 interaction in the formation of blood clots and the development of lymphatic vessels.

Pat Pages | EurekAlert!
Further information:
http://www.asbmb.org

Further reports about: Aggregation CLEC-2 Interaction Surface Vessels aggregate blood vessel platelet podoplanin rhodocytin

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>