Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cancer spreads by aggregating platelets

03.09.2007
Scientists have provided new details about how cancer cells spread by surrounding themselves with platelets – the blood cells needed for blood clotting.

Katsue Suzuki-Inoue, Associate Professor of Medicine at the University of Yamanashi, Japan, and colleagues have identified for the first time a protein on the surface of platelets that plays a key role in cancer-induced platelet aggregation. These results could help design new drugs that prevent cancer cells from metastasizing, or spreading throughout the body.

“In order to spread, cancer cells release chemicals that make neighboring platelets aggregate and surround the cancer cells, helping them evade the immune system and allowing them to bind to the blood vessels’ inner linings,” Suzuki-Inoue says. “We have discovered how one of these chemicals, called podoplanin, binds to the platelet cells and stimulate their aggregation. Although podoplanin has been known since 1990, how it induces platelet cell aggregation has been a mystery – until now.”

The new study, to be published in the September 7 issue of the Journal of Biological Chemistry, was selected as a “Paper of the Week” by the journal’s editors, meaning that it belongs to the top one percent of papers reviewed in significance and overall importance.

Suzuki-Inoue and colleagues had previously discovered that the snake venom rhodocytin stimulates platelet aggregation by binding to a protein called C-type lectin-like receptor 2 (CLEC-2) located on the surface of the platelets in a way similar to a key (rhodocytin) binding to a lock (CLEC-2).

By studying the details of what happens inside these platelets before and during aggregation, the scientists noticed many similarities with the way platelets aggregate when they are induced by podoplanin from cancer cells. Whether stimulated by rhodocytin or podoplanin, the platelets are slow to aggregate at first and, after they start aggregating, the proteins that are activated inside the platelets are similar in both cases.

Suzuki-Inoue and her team reasoned that maybe CLEC-2 binds not only to rhodocytin but also to podoplanin. The scientists tested this hypothesis by first growing CLEC-2 in culture and then by adding them to cultured cells expressing podoplanin. The hypothesis was confirmed: CLEC-2 and podoplanin bound to each other in the same lock-and-key mechanism displayed by CLEC-2 and rhodocytin.

“We were pleasantly surprised,” Suzuki-Inuoue says. “After all these years, we finally found the long-missing protein to which podoplanin binds to promote platelet aggregation.”

The scientists confirmed their findings by mixing podoplanin-expressing cells with platelet cells genetically altered so that the CLEC-2 on their surface could not bind to podoplanin. Platelet aggregation was completely inhibited, confirming that CLEC-2 was the protein necessary for podoplanin-induced platelet aggregation.

This result also suggested that it may be possible to prevent cancer cells from stimulating platelet aggregation – and thus allow the cancer cells to metastasize – by blocking the interaction between CLEC-2 and podoplanin.

“Our study clearly shows that podoplanin on the surface of tumor cells induces platelet aggregation by interacting with CLEC-2 on the surface of platelet cells,” Suzuki-Inuoue says. “Preventing CLEC-2 and podoplanin from binding to each other may be a good therapeutic way of preventing tumor metastasis.”

The role of podoplanin-CLEC-2 interaction may not be limited to tumor metastasis, the scientists note. When podoplanin and CLEC-2 bind to each other, not only do platelets aggregate, but they also release chemicals that may form new blood vessels which, in turn, provide the tumor with the nutrients and oxygen it needs to grow. As a result, locking the podoplanin-CLEC-2 interaction may not only prevent cancer metastasis but also limit the growth of cancer cells, Suzuki-Inuoue says.

The researchers also found that podoplanin present within lymphatic vessels – which carry plasma and white blood cells – also induces platelet aggregation, showing that a better understanding of how podoplanin and CLEC-2 bind together may provide information on how lymphatic vessels form and work.

Suzuki-Inuoue and colleagues are now trying to develop antibodies that look like CLEC-2 and that can bind to podoplanin, preventing it from attaching to platelet cells. The scientists are also investigating the role of the podoplanin-CLEC-2 interaction in the formation of blood clots and the development of lymphatic vessels.

Pat Pages | EurekAlert!
Further information:
http://www.asbmb.org

Further reports about: Aggregation CLEC-2 Interaction Surface Vessels aggregate blood vessel platelet podoplanin rhodocytin

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>