Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New viruses to treat bacterial diseases – "My enemies’ enemy is my friend”

03.09.2007
Viruses found in the River Cam in Cambridge, famous as a haunt of students in their punts on long, lazy summer days, could become the next generation of antibiotics, according to scientists speaking today (Monday 3 September 2007) at the Society for General Microbiology’s 161st Meeting at the University of Edinburgh, UK, which runs from 3-6 September 2007.

With antibiotics now over-prescribed for treatments of bacterial infections, and patients failing to complete their courses of treatment properly, many bacteria are able to pick up an entire array of antibiotic resistance genes easily by swapping genetic material with each other.

MRSA – the multiple drug resistant strain of Staphylococcus aureus - and newly emerging strains of the superbug Clostridium difficile have forced medical researchers to realise that an entirely different approach is required to combat these bacteria.

“By using a virus that only attacks bacteria, called a phage – and some phages only attack specific types of bacteria – we can treat infections by targeting the exact strain of bacteria causing the disease”, says Ana Toribio from the Wellcome Trust Sanger Institute in Hinxton, Cambridgeshire, UK. “This is much more targeted than conventional antibiotic therapy”.

... more about:
»Treatment »antibiotic »bacterial »infections »phage »strain

The scientists used a close relative of Escherichia coli, the bacterium that commonly causes food poisoning and gastrointestinal infections in humans, called Citrobacter rodentium, which has exactly the same gastrointestinal effects in mice. They were able to treat the infected mice with a cocktail of phages obtained from the River Cam that target C. rodentium. At present they are optimizing the selection of the viruses by DNA analysis to utilise phage with different profiles.

“Using phages rather than traditional broad-spectrum antibiotics, which essentially try to kill all bacteria they come across, is much better because they do not upset the normal microbial balance in the body”, says Dr Derek Pickard from the Wellcome Trust Sanger Institute. “We all need good bacteria to help us fight off infections, to digest our food and provide us with essential nutrients, and conventional antibiotics can kill these too, while they are fighting the disease-causing bacteria”

Phage based treatment has been largely ignored until recently in Western Europe and the USA. The main human clinical reports have come from Eastern Europe, particularly the Tbilisi Bacteriophage Institute in Georgia where bacteriophages are used for successful treatment of infections such as diabetic ulcers and wounds. More studies are planned along western clinical trial lines with all the standards required.

“The more we can develop the treatment and understand the obstacles encountered in using this method to treat gut infections, the more likely we are to maximise its chance of success in the long term”, says Ana Toribio. “We have found that using a variety of phages to treat one disease has many benefits over just using one phage type to attack a dangerous strain of bacteria, overcoming any potential resistance to the phage from bacterial mutations”.

“This brings us back to the problem we are trying to address in the first place. If anything, conventional antibiotic treatment has led to MRSA and other superbug infections becoming not only more prevalent but also more infectious and dangerous. Bacteriophage therapy offers an alternative that needs to be taken seriously in Western Europe”, says Derek Pickard.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk
http://www.sgm.ac.uk/meetings/MTGPAGES/Edinburgh07.cfm

Further reports about: Treatment antibiotic bacterial infections phage strain

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>