Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurotransmitters don't travel between cells through electrical current

31.08.2007
In studying how neurotransmitters travel between cells -- by analysis of events in the dimensions of nanometers -- Cornell researchers have discovered that an electrical current thought to be present during that process does not, in fact, exist.

These results were reported July 22 in the online edition of the journal Nature Cell Biology by Cornell researchers Liang-Wei Gong and Manfred Lindau, applied and engineering physics, as well as their colleague Guillermo Alvarez de Toledo at the University of Seville, Spain.

Lindau explained that neurotransmitters and hormones are stored in neurons (nerve cells) in small packets, membrane-bound vesicles, typically 30 to 300 nanometers in diameter (a nanometer is one-billionth of a meter). When a cell is stimulated by electrical activity, calcium ions enter the cell and the vesicles release their contents by fusion with the plasma membrane surrounding the cell.

Prior experiments had suggested that the vesicles contain ion channels that carry charged neurotransmitters from the cell vesicle out of the cell, generating an electrical current flowing out of the cell.

... more about:
»Ion »Nanometer »vesicle

Lindau and colleagues report in their paper that there is no such current present. Their experiments further showed that, instead, the charge compensation is generated by the influx of positive sodium ions from the outside into the vesicles, a process known as electrodiffusion.

"Therefore, the ion channels in these vesicles must play a different role that is yet to be discovered," Lindau explained.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Ion Nanometer vesicle

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>