Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Researchers at the University of Pennsylvania Discover What Makes Lymphomas Tick

31.08.2007
University of Pennsylvania researchers and their colleagues at the Wistar Institute and University of Oxford have discovered the molecular process by which the PAX5 protein, necessary for lymphocyte development, promotes the growth of common lymphomas, thereby unveiling a potential new target in the fight against cancer.

Researchers found that PAX5 stimulates the growth of cancerous tumors by spurring cell division normally observed during B cell immune response. In a sense, PAX5 "hijacks" the body's own defense system designed to multiply antibody-making B cells exposed to foreign antigens.

In lymphomas, rather than facilitate an appropriate immune response, PAX5 locks the B cell division switch in the "on" position, regardless of exposure to antigens. This is because PAX5 increases production of several key molecules comprising B cell receptor, which drives B cell expansion. Over-expression of PAX5 in mouse B cell lymphoma cell lines increased tumor growth when these cells were transplanted into mice. Conversely, dampening the expression of PAX5 decreased cancerous growth.

These latest findings on the role of PAX5 are published in the September issue of The Journal of Clinical Investigation.

... more about:
»PAX5 »Thomas-Tikhonenko »lymphoma

Andrei Thomas-Tikhonenko, an associate professor in the Department of Pathobiology in the School of Veterinary Medicine at Penn, has studied the PAX5 gene for five years, demonstrating that PAX5 shapes the phenotype of bone marrow-derived tumors, a study published in 2003 in the journal Blood.

"We have long believed that PAX5 was involved in B-lymphomagenesis, based on the discovery of PAX-5-specific translocations and somatic hypermutations in diffuse large B cell and other non-Hodgkin lymphomas," Thomas-Tikhonenko said. "Yet at the molecular and cellular levels, the contribution of PAX5 to neoplastic growth remained undeciphered."

The study used two B cell lymphoma cell lines from the 2003 Blood paper, Myc5-M5 and Myc5-M12, that spontaneously silence PAX5 and then form slow-growing tumors. Diana Cozma, the first author on the study, reconstituted these cells with the engineered version of PAX5, which required the synthetic estrogen tamoxifen for activity. In her key experiment, tumors grew briskly when mice were treated with tamoxifen but stagnated if tamoxifen were withheld; however, the reason for that became apparent only after large-scale gene-profiling studies.

"It appears that PAX5, which regulates gene expression, instructs B cells to make enough of the components of B cell receptors to spur tumor growth even in the absence of foreign antigens, which normally initiate the immune response," Thomas-Tikhonenko said.

Studies on human clinical samples corroborated this conclusion. Approximately half of lymphoma samples from the University of Oxford's John Radcliffe Hospital tumor bank exhibited evidence of abnormal B cell receptor activation.

The study was conducted by Thomas-Tikhonenko, Cozma, Duonan Yu and Anna Azvolinsky of Penn Vet's Department of Pathobiology; Suchita Hodawadekar and Michael Atchison of Penn Vet's Department of Animal Biology; Shannon Grande and John Monroe of the Department of Pathobiology and Laboratory Medicine in the Penn School of Medicine; John Tobias of the Biomedical Informatics Core at Penn; Michele Metzgar and Jan Erikson of the Wistar Institute; and Jennifer Paterson and Teresa Marafioti of the John Radcliffe Hospital.

The research was funded by the National Cancer Institute and the Commonwealth of Pennsylvania Health Research Formula Fund.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: PAX5 Thomas-Tikhonenko lymphoma

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>