Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a role for glucose-sensing neurons in type 2 diabetes

30.08.2007
In cases of Type 2 diabetes, the body’s cells fail to appropriately regulate blood glucose levels. Research has suggested that this results from two simultaneous problems: the improper functioning of pancreatic beta cells and the impairment of insulin’s actions on target tissues, including the liver, fat and muscles.

But now, research led by scientists at Beth Israel Deaconess Medical Center (BIDMC) and Oregon Health & Science University has identified a third abnormality that could play an important role in the development of obesity-induced Type 2 diabetes. Reported in the journal Nature, which appears in its Advance Online format today, the study describes a previously unrecognized role for glucose-sensing neurons in the onset of the disease – in other words, an important component of Type 2 diabetes may indeed be “in your head.”

“For many years we’ve known that subpopulations of neurons in the brain become ‘excited’ by glucose,” explains Bradford Lowell, MD, PhD, an investigator in the Division of Endocrinology, Diabetes and Metabolism at BIDMC and Professor of Medicine at Harvard Medical School (HMS). “But we haven’t understood exactly how or why this is significant. With this study, we show that these neurons sense increases in glucose and then initiate responses aimed at returning blood-glucose levels to normal. This is the first demonstration that glucose-sensing by neurons plays an important role in responding to rising blood glucose levels.” This finding, adds Lowell, who served as the study’s co-senior author together with Michael Cowley, PhD, of the Division of Neuroscience, Oregon Health & Science University, could potentially lead to novel treatments for Type 2 diabetes.

Knowing that the pro-opiomelanocortin (POMC) neurons regulate body weight in both mice and humans, co-lead authors Laura Parton, PhD, Chian Ping Ye, PhD, Roberto Coppari, PhD, and Pablo Enriori, PhD, decided to study the electrical properties of these cells in an animal model.

... more about:
»Diabetes »POMC »PhD »glucose-sensing »levels »type

“New advances in genetic techniques have allowed us to express green fluorescent proteins [GFP] specifically in one cell type,” explains Parton, a member of the Lowell laboratory at BIDMC and Postdoctoral Research Fellow at HMS. “The advantage of expressing a fluorescent marker specifically in one type of neuron is the ability to identify and distinguish these cells from the many hundreds of other cell types that are present in the brain.”

As predicted, the electrophysiology experiments demonstrated that POMC neurons became electrically excited by a rise in glucose, similar to what would occur after eating a meal. The authors then went on to disrupt glucose-sensing abilities specifically in the POMC neurons – and confirmed that these neurons play a critically important role in regulating blood-glucose levels in mice. And, as is the case in pancreatic beta cells, the glucose-sensing ability of POMC neurons was shown to be defective in the mice with obesity-induced Type 2 diabetes.

“What is apparently happening,” says Parton, “is that an increase in the activity of the mitochondrial uncoupling protein 2 (UCP2), is behind the loss of glucose-sensing ability in the POMC neurons. Increased activity of UCP2 is known to cause loss of glucose-sensing and defective insulin secretion by pancreatic beta cells and this study now shows that a similar phenomenon also occurs in neurons.”

“These new findings add to our understanding of Type 2 diabetes at a critically important time,” adds Lowell. “The incidence of the disease has risen to epidemic proportions, and obesity is a big risk factor for the disease. The discovery that defects in glucose-sensing by the brain may also be contributing to Type 2 diabetes could help lead to new therapeutic strategies for this widespread problem.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.harvard.edu
http://www.bidmc.harvard.edu

Further reports about: Diabetes POMC PhD glucose-sensing levels type

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>