Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies prefer fizzy drinks

30.08.2007
Taste cells found specific to carbonation, UC Berkeley neuroscientists report

While you may not catch a fly sipping Perrier, the insect has specialized taste cells for carbonated water that probably encourage it to binge on food with growing microorganisms. Yeast and bacteria both produce carbon dioxide (CO2) when they feast, and CO2 dissolves readily in water to produce seltzer or soda water.

This is one of the first, if not the only taste sensation discovered in animals beyond the five that humans taste - sweet, sour, bitter, salty and umami, or savory.

"This was unexpected, because fruit flies also smell CO2 and they avoid it," said neurobiologist Kristin Scott, assistant professor of molecular and cell biology at UC Berkeley. "One way that we like to think of it is that flies seek the right amount of rottenness - if fruit is only half rotten, producing a little CO2, it's good; if too rotten, it gives off a lot of CO2 and is bad tasting. They seek a balance."

... more about:
»CO2 »Carbon »carbonation »five »fly »receptor »yeast

Scott and her UC Berkeley colleagues, graduate students Walter Fischler, technician Priscilla Kong and postdoctoral fellow Sunanda Marella - all in the Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute - report their discovery in the Aug. 30 issue of Nature.

Mammals have five known types of taste receptors, though there may be more to discover, Scott said. Flies may have five distinct receptors also, but not the same ones mammals have. While Scott has shown that fruit flies can detect sweet and bitter compounds, and now carbonation, she has discounted their ability to taste umami and said that their ability to taste sour compounds is questionable. She and her lab continue to investigate other unknown taste modalities in fruit flies, which could be any of a number of tastes, such as salt or alcohol.

The discovery came when Fischler, frustrated that he could not find a chemical that stimulated an unknown type of fruit fly taste cell he had isolated, tested the cells' reaction to a drop of Samuel Adams beer. Surprised by a positive response, he tried to narrow down the taste preference to one of the many chemicals in beer. Flat beer and dry yeast, for example, did not work. That's when he discovered the leftover bottle of Calistoga mineral water.

As he was searching for beer components to test, he said, "I opened the refrigerator and looked in, when a light bulb went on. Calistoga would be a great way of testing CO2."

The rest is history. Dry ice - frozen CO2 - produced a strong response, while high levels of gaseous CO2 produced a weak response in the taste cells. Sodium bicarbonate in a basic solution that does not contain CO2 bubbles did not work; bicarbonate in a solution with CO2 bubbles did. The liquid in which yeast grow, though not the yeast themselves, also elicited a response from the taste cell. These and a few other genetic tests narrowed the taste trigger down to dissolved carbon dioxide.

The preference for carbonation is weak compared with that for sweetness, Scott noted, implying that seltzer enhances taste or makes other tastes more acceptable. This makes sense because CO2 has no nutritional value, but is a byproduct of organisms - yeast and bacteria - that do provide nutrients, she said.

The newly discovered taste sensors for carbonation reside on their own structures, called taste pegs, on the tongue of the fly. While a fruit fly's four other taste cells are perched on the tip of bristles that cover the entire body, the carbonated water taste cells are clustered around the margins of the sponge-like tip of the proboscis, at the base of taste bristles.

Scott investigates taste cells, which are a type of nerve cell, and is characterizing the cells and genes associated with different tastes. So far, she and her laboratory colleagues have identified the sweet and bitter cells and some of the gustatory receptor genes that detect sweet and bitter compounds in fruit flies.

Fischler now is trying to isolate the actual receptor in the CO2-sensing nerve cell that grabs the CO2 molecule and sends a signal to the fly brain that there is carbonation in the food. It will then be possible to see if others, including humans, also have carbonation receptors on taste cells.

"There may be many more taste modalities in humans" than the five known today, said Scott. Even if CO2 is a taste unique to fruit flies, it's discovery suggests that other animals may have taste receptors tuned to important chemicals in their environment, she said, either to avoid them, as is the case with bitter chemicals, or seek them out, as is the case with sugars and CO2.

"Thus, taste modalities may differ according to nutritional needs," she and her colleagues wrote. "Alternatively, CO2 may be an unappreciated taste modality in many organisms."

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: CO2 Carbon carbonation five fly receptor yeast

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>