Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics of imatinib resistance in acute lymphoblastic leukemia

30.08.2007
In the September 15th issue of Genes & Development, Drs. Richard T. Williams, Willem den Besten, and Charles J. Sherr at Howard Hughes Medical Institute, St. Jude Children’s Research Hospital in Memphis TN, lend new insights into how an aggressive form of acute lymphoblastic leukemia (ALL) develops, and how sensitivity to the targeted chemotherapeutic drug, imatinib, can be diminished through interactions between tumor cells and the host microenvironment.

ALL, a cancer of the bone marrow affecting 4,000 US residents annually, is characterized by the over-production of immature white blood cells. An aggressive form of ALL results from a chromosomal translocation, known as the Philadelphia chromosome (Ph), in which segments from chromosomes 9 and 22 are aberrantly fused together. Ph+ ALL is far more prevalent in adults (~30% of adult ALL) than in children (~4% of pediatric ALL), but it carries a poor prognosis in both age groups. Ph+ cells express a protein (encoded by an oncogene created by the chromosome fusion) called BCR-ABL. BCR-ABL is a constitutively active enzyme, a tyrosine kinase, which promotes uncontrolled cell proliferation.

Continuous treatment with the BCR-ABL tyrosine kinase inhibitor, imatinib, has revolutionized the therapy of another form of Ph+ cancer, chronic myelogenous leukemia (CML), by inducing durable remissions. However, the response of Ph+ ALL patients is not nearly as good, leading to shorter remissions and more rapid emergence of imatinib resistance. In general, Ph+ CML and ALL patients that fail imatinib therapy develop mutations in the BCR-ABL kinase that make them drug-resistant, but the reasons underlying the increased rate of emergence of mutant clones in Ph+ ALL has not been satisfactorily explained.

Williams and colleagues tracked the development of imatinib resistance, using a mouse model of Ph+ ALL. They engineered BCR-ABL-expressing lymphocyte progenitors that also lack the tumor suppressor protein ARF (which is deleted in more than 30% of Ph+ ALL patients, but not in CML patients, at their time of diagnosis). Interestingly, ARF-deficient lymphocytes expressing BCR-ABL were so highly aggressive that inoculation of as few as 20 such cells into healthy mice induced fatal ALL in less than 3 weeks. “Although experiments with CML support the concept that these leukemias arise from a rare population of ‘cancer stem cells’, our work on Ph+ ALL emphasizes that this need not be the case,” says Williams.

... more about:
»ALL »BCR-ABL »CML »Imatinib »Ph+ »leukemia »resistance

Further genetic experiments revealed that signals from the bone marrow micro-environment of the host animals were able to sustain the viability of ARF-deficient leukemia cells in the face of imatinib therapy. “We suspect that similar signals may nurture ARF-deficient Ph+ ALL cells in patients,” says Sherr, “thereby allowing the rapid emergence of imatinib-resistant clones.”

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: ALL BCR-ABL CML Imatinib Ph+ leukemia resistance

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>