Influence of sex and handedness on brain is similar in capuchin monkeys and humans

A recently published paper by Associate Professor of Psychology and Biology Kimberley A. Phillips (Hiram College), Chet C. Sherwood (George Washington University) and Alayna L. Lilak (Hiram College), reports finding both sex and handedness influences on the relative size of the corpus callosum. The researchers’ contribution appears in PLoS ONE, the online, open-access journal of the Public Library of Science. The paper can be read at: http://www.plosone.org/doi/pone.0000792.

In the study, thirteen adult capuchins underwent magnetic resonance imaging of the brain to determine the size of their corpus callosum, which is the major white matter tract connecting the left and right cerebral hemispheres. The monkeys were later given a task to determine hand preference. The authors’ results led them to conclude that, as in humans, male capuchins have a smaller relative size of the corpus callosum than females, and right-handed individuals have a smaller relative size of the corpus callosum than left-handed individuals.

As the two hemispheres show greater independence of function, the relative size of the corpus callosum is expected to be smaller. This has been documented in humans, and same pattern was found in capuchins. Phillips and her co-authors hypothesize their results are related to hemispheric specialization for complex foraging tasks that require the integration of motor actions and visuospatial information. In the wild, capuchin monkeys utilize both arboreal and terrestrial substrates and are also noted for being very adept at capturing small rapid prey, such as birds, lizards, and squirrels.

While such research frequently is associated with large research universities, Phillips says scientists at small liberal arts colleges such as Hiram often do not receive enough credit and, especially, for involving undergraduates, such as Lilak, in their work.

“It is not where you are,” Phillips says. “It is the quality of the science, and scientists at small liberal arts colleges can and do conduct high-quality research. Undergraduates are an integral part of my research team – they participate in lab meetings, brainstorming, sharing ideas. They are colleagues in my lab. They just need a little more mentoring.”

At Hiram College, Phillips typically has six to eight students working in her laboratory. Alayna Lilak, who received her degree in psychology in May, has recently begun a job as a research technician in a Stanford University lab.

Media Contact

Andrew Hyde alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors