Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Influence of sex and handedness on brain is similar in capuchin monkeys and humans

30.08.2007
Capuchin monkeys are playful, inquisitive primates known for their manual dexterity, complex social behavior, and cognitive abilities. New research now shows that just like humans, they display a fundamental sex difference in the organization of the brain, specifically in the corpus callosum, the region that connects the two cerebral lobes.

A recently published paper by Associate Professor of Psychology and Biology Kimberley A. Phillips (Hiram College), Chet C. Sherwood (George Washington University) and Alayna L. Lilak (Hiram College), reports finding both sex and handedness influences on the relative size of the corpus callosum. The researchers’ contribution appears in PLoS ONE, the online, open-access journal of the Public Library of Science. The paper can be read at: http://www.plosone.org/doi/pone.0000792.

In the study, thirteen adult capuchins underwent magnetic resonance imaging of the brain to determine the size of their corpus callosum, which is the major white matter tract connecting the left and right cerebral hemispheres. The monkeys were later given a task to determine hand preference. The authors’ results led them to conclude that, as in humans, male capuchins have a smaller relative size of the corpus callosum than females, and right-handed individuals have a smaller relative size of the corpus callosum than left-handed individuals.

As the two hemispheres show greater independence of function, the relative size of the corpus callosum is expected to be smaller. This has been documented in humans, and same pattern was found in capuchins. Phillips and her co-authors hypothesize their results are related to hemispheric specialization for complex foraging tasks that require the integration of motor actions and visuospatial information. In the wild, capuchin monkeys utilize both arboreal and terrestrial substrates and are also noted for being very adept at capturing small rapid prey, such as birds, lizards, and squirrels.

... more about:
»Brain »Callosum »Corpus »Phillips »Sex »capuchin »relative

While such research frequently is associated with large research universities, Phillips says scientists at small liberal arts colleges such as Hiram often do not receive enough credit and, especially, for involving undergraduates, such as Lilak, in their work.

“It is not where you are,” Phillips says. “It is the quality of the science, and scientists at small liberal arts colleges can and do conduct high-quality research. Undergraduates are an integral part of my research team - they participate in lab meetings, brainstorming, sharing ideas. They are colleagues in my lab. They just need a little more mentoring.”

At Hiram College, Phillips typically has six to eight students working in her laboratory. Alayna Lilak, who received her degree in psychology in May, has recently begun a job as a research technician in a Stanford University lab.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000792

Further reports about: Brain Callosum Corpus Phillips Sex capuchin relative

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>