Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Influence of sex and handedness on brain is similar in capuchin monkeys and humans

30.08.2007
Capuchin monkeys are playful, inquisitive primates known for their manual dexterity, complex social behavior, and cognitive abilities. New research now shows that just like humans, they display a fundamental sex difference in the organization of the brain, specifically in the corpus callosum, the region that connects the two cerebral lobes.

A recently published paper by Associate Professor of Psychology and Biology Kimberley A. Phillips (Hiram College), Chet C. Sherwood (George Washington University) and Alayna L. Lilak (Hiram College), reports finding both sex and handedness influences on the relative size of the corpus callosum. The researchers’ contribution appears in PLoS ONE, the online, open-access journal of the Public Library of Science. The paper can be read at: http://www.plosone.org/doi/pone.0000792.

In the study, thirteen adult capuchins underwent magnetic resonance imaging of the brain to determine the size of their corpus callosum, which is the major white matter tract connecting the left and right cerebral hemispheres. The monkeys were later given a task to determine hand preference. The authors’ results led them to conclude that, as in humans, male capuchins have a smaller relative size of the corpus callosum than females, and right-handed individuals have a smaller relative size of the corpus callosum than left-handed individuals.

As the two hemispheres show greater independence of function, the relative size of the corpus callosum is expected to be smaller. This has been documented in humans, and same pattern was found in capuchins. Phillips and her co-authors hypothesize their results are related to hemispheric specialization for complex foraging tasks that require the integration of motor actions and visuospatial information. In the wild, capuchin monkeys utilize both arboreal and terrestrial substrates and are also noted for being very adept at capturing small rapid prey, such as birds, lizards, and squirrels.

... more about:
»Brain »Callosum »Corpus »Phillips »Sex »capuchin »relative

While such research frequently is associated with large research universities, Phillips says scientists at small liberal arts colleges such as Hiram often do not receive enough credit and, especially, for involving undergraduates, such as Lilak, in their work.

“It is not where you are,” Phillips says. “It is the quality of the science, and scientists at small liberal arts colleges can and do conduct high-quality research. Undergraduates are an integral part of my research team - they participate in lab meetings, brainstorming, sharing ideas. They are colleagues in my lab. They just need a little more mentoring.”

At Hiram College, Phillips typically has six to eight students working in her laboratory. Alayna Lilak, who received her degree in psychology in May, has recently begun a job as a research technician in a Stanford University lab.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000792

Further reports about: Brain Callosum Corpus Phillips Sex capuchin relative

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>