Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may help defang viruses

29.08.2007
Researchers may be able to tinker with a single amino acid of an enzyme that helps viruses multiply to render them harmless, according to molecular biologists who say the discovery could pave the way for a fast and cheap method of making vaccines.

"We have successfully tested this technique with poliovirus," said Craig Cameron, the Paul Berg professor of biochemistry and molecular biology at Penn State. "And we think it is applicable to most other viruses." Viruses have a simple mission; infect a cell, make more viruses, and then break out of the cell to infect more cells. This calls for fast and efficient multiplication. Viruses do this with the help of an enzyme called polymerase, whose main job is to assist in making more copies of the virus.

Once a virus infects a cell, there is a race against the clock between the virus, which is trying to multiply quickly, and the immune system trying to control the spread. A virus can cause disease and death if it can spread more rapidly than the immune system can neutralize it.

But if the body has been exposed to a vaccine – weakened form of the virus in this case – the body can respond more rapidly when it is exposed to the virulent strain. The key to developing vaccines is finding the one strain – mutation – that will prime the immune system without causing disease.

... more about:
»Vaccine »acid »amino »immune system »infect »poliovirus »strain

The Penn State researchers may have done just that. Cameron and his colleagues, Jamie Arnold and Christian Castro, both research associates, have identified a key amino acid in the polymerase of poliovirus that controls the speed and accuracy with which the virus is able to multiply.

By replacing this key residue with different amino acids, the researchers were able to generate mutants of the virus that are essentially harmless.

"We found that very subtle changes in the chemistry at this location of the polymerase has dramatic effects on weakening the virus," said Cameron, who has a provisional patent on the technique.

When lab mice are infected with these mutant strains of the virus, it takes a lot more of the virus to sicken, or kill the animals. Cameron says tests suggest that some viral strains with specific mutation patterns lead to a form of the virus that cannot sustain itself.

"By altering a single lysine residue, you not only affect the virus' replication, but also the accuracy with which it is copied," he said. "A virus’ replication speed and accuracy is optimized; there is a delicate balance. We have defined the optima for poliovirus but where that balance is going to be for different viruses, we do not yet know."

Since all viruses have a similar mechanism regulating their replication, Cameron says the discovery may represent a universal mechanism of weakening other viruses causing diseases such as influenza, SARS, Dengue fever and the West Nile Virus for developing vaccines.

"All standard approaches for vaccine development take years," said Cameron. "It is all a random trial and error process to get an attenuated – weakened – virus that may be treated as a potential vaccine candidate. There is no direct method."

Positive strand RNA viruses – those with only one gene – such as SARS coronavirus, and hepatitis C virus compound the problem. "The gene makes a protein that gets processed into a lot of different functions," said Cameron. "There is no gene to delete." But these viruses do have an amino acid similar to the residue identified in poliovirus, which can be replaced to produce weak variants. These new strains are quickly neutralized by the immune system, providing protection against the more virulent strains.

The Penn State Scientist says his findings could help avoid the long time it takes to create vaccines, and might help mount a more effective response against ever-changing viruses such as influenza, as well as emerging and re-emerging viruses such as SARS coronavirus, West Nile Virus and Dengue virus.

He added that the technique of quickly creating weak viral strains for use as vaccines could also protect against viruses such as Ebola and smallpox, which might be used as biological weapons.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu
http://www.bmb.psu.edu/

Further reports about: Vaccine acid amino immune system infect poliovirus strain

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>