Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sex is thirst-quenching for female beetles

Female beetles mate to quench their thirst according to new research by a University of Exeter biologist. The males of some insect species, including certain types of beetles, moths and crickets, produce unusually large ejaculates, which in some cases can account for around 10% of their body weight. The study shows that dehydrated females can accept sexual invitations simply to get hold of the water in the seminal fluid.

Dr Martin Edvardsson, whose research is published in the journal Animal Behaviour (August 2007), studied the bruchid beetle Callosobruchus maculatus, a serious pest in warmer parts of the world. Some females were given unlimited access to water while others were not. All females were free to mate with males and the study found that thirsty females mated 40% more frequently than those with free access to water.

Female bruchid beetles can absorb the water in the seminal fluid through their reproductive tracts and need to mate less frequently the more water they take from each mating. This is to a male’s advantage because the longer the female goes without mating with another male, the greater his chance of successful fertilization. By transferring a large amount of water with the sperm, a male can help ensure his sperm has more time to fertilize the eggs without having to compete with the sperm from future matings. Dr Martin Edvardsson of the University of Exeter says: ‘The large ejaculates may have evolved because males can make it less beneficial for females to remate by providing them with a large amount of water.’

From morsels of food to less useful offerings like dried leaves or balls of silk, insects’ nuptial gifts are thought to perform the role of enticing a female to mate or investing in the resulting offspring. However, this study shows that males can also prevent females from mating with other males by giving them a valuable nuptial gift. Dr Edvardsson says: ‘This research offers an alternative theory on the function of ‘nuptial gifts’, which are an important part of insect courtship and mating.’

... more about:
»Edvardsson »beetle »mating »need »species »sperm

Dr Edvardsson argues that the trade-off between the costs and benefits of mating is essential to the mating behaviour of female bruchid beetles. The males have spines on their genitalia that puncture the females’ reproductive tract as they mate. Because of the damage this causes, females must carefully trade off the costs and benefits of mating, and limit the number of times they mate depending on their need for water and sperm.

Because there are always costs as well as benefits associated with mating, similar trade-offs are likely to be important in many species where males provide their mates with material resources. ‘The key thing’ says Dr Edvardsson ‘is that the resource provided by males is less beneficial to females the more of it they already have, like water or food for example.’

Though Dr Edvardsson believes these findings may be relevant to many other animal species, he does not think the study has any implications for our understanding of sexual behaviour in all other animals. He concludes: ‘This is unlikely to occur in say, mammals and birds, because it is impossible for a male to give a female a gift that would fulfill her needs for food or water for such a long period of time. Also, while many female insects can store live sperm inside for long periods of time, females of these species need relatively fresh sperm to fertilize their eggs.

Abigail Dixon | EurekAlert!
Further information:

Further reports about: Edvardsson beetle mating need species sperm

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>