Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene for metastasis

29.08.2007
Weizmann Institute scientists reveal the actions of a key player in colorectal cancer

Colorectal cancer is one of the most prevalent cancers in the Western world. The tumor starts off as a polyp but then turns into an invasive and violent cancer, which often spreads to the liver. In an article recently published in the journal Cancer Research, Prof. Avri Ben-Ze’ev and Dr. Nancy Gavert of the Weizmann Institute’s Molecular Cell Biology Department reveal mechanisms that help this cancer metastasize.

In a majority of cases, colorectal cancer is initiated by changes in a key protein – beta-catenin. One of the roles of this protein is to enter the cell nucleus and activate gene expression. But in colorectal and other cancers, beta-catenin over-accumulates in the cell and inappropriately activates genes, leading to cancer.

Surprisingly, one of the genes activated by beta-catenin, which had been previously detected in colorectal cancer cells by Ben-Ze’ev’s group, codes for a receptor called L1-CAM. This receptor is a protein usually found on nerve cells, where it plays a role in nerve cell recognition and motility. What is this receptor doing in cancer cells" Ben-Ze’ev’s previous research had shown that L1-CAM is only expressed on certain cells located at the invasive front of the tumor tissue, hinting that it could be an important player in metastasis.

In this study, the scientists found that colorectal cancer cells engineered to express the L1-CAM gene indeed spread to the liver, while those cells lacking L1-CAM did not.

In collaboration with Prof. Eytan Domany and research student Michal Sheffer of the Insitute’s Physics of Complex Systems Department, Ben-Ze’ev then compared the expression of genes induced by L1-CAM in cultured colon cancer cells to those in 170 samples of colorectal cancer tissue removed from patients, and in 40 samples of normal colon tissue. Out of some 160 genes induced by L1-CAM, about 60 were highly expressed in the cancerous tissue, but not in normal colon tissue. Ben-Ze’ev plans to conduct further research into the role of these genes, to uncover L1-CAM’s function in metastasis.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il
http://wis-wander.weizmann.ac.il

Further reports about: L1-CAM colorectal colorectal cancer metastasis

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>