Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene for metastasis

29.08.2007
Weizmann Institute scientists reveal the actions of a key player in colorectal cancer

Colorectal cancer is one of the most prevalent cancers in the Western world. The tumor starts off as a polyp but then turns into an invasive and violent cancer, which often spreads to the liver. In an article recently published in the journal Cancer Research, Prof. Avri Ben-Ze’ev and Dr. Nancy Gavert of the Weizmann Institute’s Molecular Cell Biology Department reveal mechanisms that help this cancer metastasize.

In a majority of cases, colorectal cancer is initiated by changes in a key protein – beta-catenin. One of the roles of this protein is to enter the cell nucleus and activate gene expression. But in colorectal and other cancers, beta-catenin over-accumulates in the cell and inappropriately activates genes, leading to cancer.

Surprisingly, one of the genes activated by beta-catenin, which had been previously detected in colorectal cancer cells by Ben-Ze’ev’s group, codes for a receptor called L1-CAM. This receptor is a protein usually found on nerve cells, where it plays a role in nerve cell recognition and motility. What is this receptor doing in cancer cells" Ben-Ze’ev’s previous research had shown that L1-CAM is only expressed on certain cells located at the invasive front of the tumor tissue, hinting that it could be an important player in metastasis.

In this study, the scientists found that colorectal cancer cells engineered to express the L1-CAM gene indeed spread to the liver, while those cells lacking L1-CAM did not.

In collaboration with Prof. Eytan Domany and research student Michal Sheffer of the Insitute’s Physics of Complex Systems Department, Ben-Ze’ev then compared the expression of genes induced by L1-CAM in cultured colon cancer cells to those in 170 samples of colorectal cancer tissue removed from patients, and in 40 samples of normal colon tissue. Out of some 160 genes induced by L1-CAM, about 60 were highly expressed in the cancerous tissue, but not in normal colon tissue. Ben-Ze’ev plans to conduct further research into the role of these genes, to uncover L1-CAM’s function in metastasis.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il
http://wis-wander.weizmann.ac.il

Further reports about: L1-CAM colorectal colorectal cancer metastasis

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>