Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene for metastasis

29.08.2007
Weizmann Institute scientists reveal the actions of a key player in colorectal cancer

Colorectal cancer is one of the most prevalent cancers in the Western world. The tumor starts off as a polyp but then turns into an invasive and violent cancer, which often spreads to the liver. In an article recently published in the journal Cancer Research, Prof. Avri Ben-Ze’ev and Dr. Nancy Gavert of the Weizmann Institute’s Molecular Cell Biology Department reveal mechanisms that help this cancer metastasize.

In a majority of cases, colorectal cancer is initiated by changes in a key protein – beta-catenin. One of the roles of this protein is to enter the cell nucleus and activate gene expression. But in colorectal and other cancers, beta-catenin over-accumulates in the cell and inappropriately activates genes, leading to cancer.

Surprisingly, one of the genes activated by beta-catenin, which had been previously detected in colorectal cancer cells by Ben-Ze’ev’s group, codes for a receptor called L1-CAM. This receptor is a protein usually found on nerve cells, where it plays a role in nerve cell recognition and motility. What is this receptor doing in cancer cells" Ben-Ze’ev’s previous research had shown that L1-CAM is only expressed on certain cells located at the invasive front of the tumor tissue, hinting that it could be an important player in metastasis.

In this study, the scientists found that colorectal cancer cells engineered to express the L1-CAM gene indeed spread to the liver, while those cells lacking L1-CAM did not.

In collaboration with Prof. Eytan Domany and research student Michal Sheffer of the Insitute’s Physics of Complex Systems Department, Ben-Ze’ev then compared the expression of genes induced by L1-CAM in cultured colon cancer cells to those in 170 samples of colorectal cancer tissue removed from patients, and in 40 samples of normal colon tissue. Out of some 160 genes induced by L1-CAM, about 60 were highly expressed in the cancerous tissue, but not in normal colon tissue. Ben-Ze’ev plans to conduct further research into the role of these genes, to uncover L1-CAM’s function in metastasis.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il
http://wis-wander.weizmann.ac.il

Further reports about: L1-CAM colorectal colorectal cancer metastasis

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>