Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conaway Lab Demonstrates Mechanism by which Transcription Factor Controls Gene Expression

28.08.2007
The Conaway Lab — led by Joan Conaway, Ph.D., and Ron Conaway, Ph.D., Investigators — has published findings that shed light on the role of the much-studied transcription factor YY1 in gene expression. Yong Cai, Ph.D., Research Specialist I, and Jingji Jin, Ph.D., Senior Research Associate, are the paper’s coequal first authors.

The paper, “YY1 functions with INO80 to activate transcription,” was posted to the Web site of Nature Structural & Molecular Biology on Aug. 26. It describes data showing that transcription factor YY1 works with a chromatin remodeling complex INO80.

“The paper offers the first demonstration of several interesting principles,” said Dr. Joan Conaway. “We learned that there is a role of the INO80 complex in gene regulation; that a chromatin remodeling complex plays a role as a coactivator for YY1; and that a transcription factor may travel with the remodeling complex required for it to gain access to promoters — suggesting that an initiating event in YY1-dependent gene activation is the corecruitment of YY1 and the human INO80 chromatin remodeling complex.”

YY1 is known to be important for turning “on” and “off” a significant number of genes, including genes that control cell division, cell differentiation, and development. Because of these contributions to cell cycle control, YY1 may eventually prove to be a good target for cancer therapy — but only if more can be learned about its functional mechanism.

“One of the most interesting findings in this paper is that one way YY1 controls gene expression is to bring the INO80 chromatin remodeling complex to the DNA sequences that control when a gene is turned on or off,” said Dr. Ron Conaway. “This process can make the gene available, or not, to the machinery that copies DNA into messenger RNA, which in turn directs the cell to make proteins.”

“This research is important because it illustrates that YY1 represents a switch point for modifying the activity of genes,” said Robb Krumlauf, Ph.D., Scientific Director. “We know that YY1 plays a significant role in regulating cellular processes, but this work from the Conaway Lab skillfully addresses questions about its mechanism of action, and provides a wealth of new information about an important transcription factor.”

Additional contributing authors from the Stowers Institute include Tingting Yao, Ph.D., Postdoctoral Research Fellow; Aaron Gottschalk, Predoctoral Researcher; Selene Swanson, Ph.D., Research Specialist II; Michael Washburn, Ph.D., Director of Proteomics; and Laurence Florens, Ph.D., Managing Director of Proteomics.

Contributing authors form the Department of Pathology at Harvard Medical School are Su Wu, Research Assistant Graduate Student; and Yang Shi, Ph.D., Professor of Pathology.

Drs. Conway hold faculty appointments in the Department of Biochemistry and Molecular Biology at the University of Kansas Medical Center. Dr. Joan Conaway was awarded the Helen Nelson Distinguished Chair by the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation in 2005. More information about the Conaway Lab is available at www.stowers-institute.org/labs/ConawayLab.asp.

About the Stowers Institute
Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing and curing disease. The Institute was founded by Jim and Virginia Stowers, two cancer survivors who have created combined endowments of $2 billion in support of basic research of the highest quality.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org
http://www.stowers-institute.org/labs/ConawayLab.asp

Further reports about: Chromatin Conaway INO80 Stowers Institute YY1 remodeling specimen processing transcription

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>