Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Conaway Lab Demonstrates Mechanism by which Transcription Factor Controls Gene Expression

The Conaway Lab — led by Joan Conaway, Ph.D., and Ron Conaway, Ph.D., Investigators — has published findings that shed light on the role of the much-studied transcription factor YY1 in gene expression. Yong Cai, Ph.D., Research Specialist I, and Jingji Jin, Ph.D., Senior Research Associate, are the paper’s coequal first authors.

The paper, “YY1 functions with INO80 to activate transcription,” was posted to the Web site of Nature Structural & Molecular Biology on Aug. 26. It describes data showing that transcription factor YY1 works with a chromatin remodeling complex INO80.

“The paper offers the first demonstration of several interesting principles,” said Dr. Joan Conaway. “We learned that there is a role of the INO80 complex in gene regulation; that a chromatin remodeling complex plays a role as a coactivator for YY1; and that a transcription factor may travel with the remodeling complex required for it to gain access to promoters — suggesting that an initiating event in YY1-dependent gene activation is the corecruitment of YY1 and the human INO80 chromatin remodeling complex.”

YY1 is known to be important for turning “on” and “off” a significant number of genes, including genes that control cell division, cell differentiation, and development. Because of these contributions to cell cycle control, YY1 may eventually prove to be a good target for cancer therapy — but only if more can be learned about its functional mechanism.

“One of the most interesting findings in this paper is that one way YY1 controls gene expression is to bring the INO80 chromatin remodeling complex to the DNA sequences that control when a gene is turned on or off,” said Dr. Ron Conaway. “This process can make the gene available, or not, to the machinery that copies DNA into messenger RNA, which in turn directs the cell to make proteins.”

“This research is important because it illustrates that YY1 represents a switch point for modifying the activity of genes,” said Robb Krumlauf, Ph.D., Scientific Director. “We know that YY1 plays a significant role in regulating cellular processes, but this work from the Conaway Lab skillfully addresses questions about its mechanism of action, and provides a wealth of new information about an important transcription factor.”

Additional contributing authors from the Stowers Institute include Tingting Yao, Ph.D., Postdoctoral Research Fellow; Aaron Gottschalk, Predoctoral Researcher; Selene Swanson, Ph.D., Research Specialist II; Michael Washburn, Ph.D., Director of Proteomics; and Laurence Florens, Ph.D., Managing Director of Proteomics.

Contributing authors form the Department of Pathology at Harvard Medical School are Su Wu, Research Assistant Graduate Student; and Yang Shi, Ph.D., Professor of Pathology.

Drs. Conway hold faculty appointments in the Department of Biochemistry and Molecular Biology at the University of Kansas Medical Center. Dr. Joan Conaway was awarded the Helen Nelson Distinguished Chair by the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation in 2005. More information about the Conaway Lab is available at

About the Stowers Institute
Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing and curing disease. The Institute was founded by Jim and Virginia Stowers, two cancer survivors who have created combined endowments of $2 billion in support of basic research of the highest quality.

Marie Jennings | EurekAlert!
Further information:

Further reports about: Chromatin Conaway INO80 Stowers Institute YY1 remodeling specimen processing transcription

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>