Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human derived stem cells can repair rat hearts damaged by heart attack

28.08.2007
When human heart muscle cells derived from embryonic stem cells are implanted into a rat after a heart attack, they can help rebuild the animal's heart muscle and improve function of the organ, scientists report in the September issue of Nature Biotechnology.

The researchers also developed a new process that greatly improves how stem cells are turned into heart muscle cells and then survive after being implanted in the damaged rat heart. The findings suggest that stem-cell-based treatments might one day help people suffering from heart disease, the leading cause of death in most of the world.

The study was conducted by researchers at the University of Washington School of Medicine in Seattle and at Geron Corp. in Menlo Park, Calif. The scientists set out to tackle two of the main challenges to treating damaged hearts with stem cells: the creation of cardiac cells from embryonic stem cells, and the survival of those cells once they are implanted in a damaged heart.

"Past attempts at treating infarcted hearts with stem cells have shown promise, but they have really been hampered by these challenges," explained Dr. Chuck Murry, director of the Center for Cardiovascular Biology in the UW Institute for Stem Cell and Regenerative Medicine, and corresponding author on the study. "This method we developed goes a long way towards solving both of those problems. We got stem cells to differentiate into mostly cardiac muscle cells, and then got those cardiac cells to survive and thrive in the damaged rat heart."

Embryonic stem cells can differentiate, or turn into, any type of cell found in the body. But researchers had struggled to get stem cells to differentiate into just cardiomyocytes, or heart muscle cells -- most previous efforts resulted in cell preparations in which only a fraction of 1 percent of the differentiated cells were cardiac muscle cells. By treating the stem cells with two growth factors, or growth-encouraging proteins, and then purifying the cells, they were able to turn about 90 percent of stem cells into cardiomyocytes.

The researchers dealt with the other big challenge of stem cell death by implanting the cells along with a cocktail of compounds aimed at helping them grow. The cocktail included a growth "matrix"-- a sort of scaffolding for the cells to latch on to as they grow -- and drugs that block processes related to cell death. When using the pro-growth cocktail, the success rate of heart muscle grafts improved drastically: 100 percent of rat hearts showed successful tissue grafts, compared to only 18 percent in grafts without the cocktail.

"The problem of cell death is pretty common in stem-cell treatments," Murry explained. "When we try to regenerate with liquid tissues, like blood or bone marrow, we're pretty good at it, but we haven't been very successful with solid tissues like skeletal muscle, brain tissue, or heart muscle. This is one of the most successful attempts so far using cells to repair solid tissues -- every one of the treated hearts had a well-developed tissue graft."

When the researchers followed up on the stem-cell treatment by taking images of the rat hearts, they found that the grafts helped thicken the walls that normally stretch out after a heart attack and cause the heart to weaken. The thickened walls were also associated with more vigorous contraction.

"We found that the grafts didn't just survive in the rat hearts -- they also helped improve the function of the damaged heart," said Dr. Michael Laflamme, UW assistant professor of pathology and the lead author of the study. "That's very important, because one of the major problems for people suffering a myocardial infarction is that the heart is damaged and doesn't pump blood nearly as well. This sort of treatment could help the heart rebound from an infarction and retain more of its function afterwards."

The next step in studying stem-cell treatments for the heart is to conduct similar experiments in large animals, like pigs or sheep, while further refining the treatment in rats. Early human clinical trials could begin in about two years, Murry said.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Cocktail Heart IMPROVE Tissue Treatment cardiac graft heart muscle

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>