Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human derived stem cells can repair rat hearts damaged by heart attack

28.08.2007
When human heart muscle cells derived from embryonic stem cells are implanted into a rat after a heart attack, they can help rebuild the animal's heart muscle and improve function of the organ, scientists report in the September issue of Nature Biotechnology.

The researchers also developed a new process that greatly improves how stem cells are turned into heart muscle cells and then survive after being implanted in the damaged rat heart. The findings suggest that stem-cell-based treatments might one day help people suffering from heart disease, the leading cause of death in most of the world.

The study was conducted by researchers at the University of Washington School of Medicine in Seattle and at Geron Corp. in Menlo Park, Calif. The scientists set out to tackle two of the main challenges to treating damaged hearts with stem cells: the creation of cardiac cells from embryonic stem cells, and the survival of those cells once they are implanted in a damaged heart.

"Past attempts at treating infarcted hearts with stem cells have shown promise, but they have really been hampered by these challenges," explained Dr. Chuck Murry, director of the Center for Cardiovascular Biology in the UW Institute for Stem Cell and Regenerative Medicine, and corresponding author on the study. "This method we developed goes a long way towards solving both of those problems. We got stem cells to differentiate into mostly cardiac muscle cells, and then got those cardiac cells to survive and thrive in the damaged rat heart."

Embryonic stem cells can differentiate, or turn into, any type of cell found in the body. But researchers had struggled to get stem cells to differentiate into just cardiomyocytes, or heart muscle cells -- most previous efforts resulted in cell preparations in which only a fraction of 1 percent of the differentiated cells were cardiac muscle cells. By treating the stem cells with two growth factors, or growth-encouraging proteins, and then purifying the cells, they were able to turn about 90 percent of stem cells into cardiomyocytes.

The researchers dealt with the other big challenge of stem cell death by implanting the cells along with a cocktail of compounds aimed at helping them grow. The cocktail included a growth "matrix"-- a sort of scaffolding for the cells to latch on to as they grow -- and drugs that block processes related to cell death. When using the pro-growth cocktail, the success rate of heart muscle grafts improved drastically: 100 percent of rat hearts showed successful tissue grafts, compared to only 18 percent in grafts without the cocktail.

"The problem of cell death is pretty common in stem-cell treatments," Murry explained. "When we try to regenerate with liquid tissues, like blood or bone marrow, we're pretty good at it, but we haven't been very successful with solid tissues like skeletal muscle, brain tissue, or heart muscle. This is one of the most successful attempts so far using cells to repair solid tissues -- every one of the treated hearts had a well-developed tissue graft."

When the researchers followed up on the stem-cell treatment by taking images of the rat hearts, they found that the grafts helped thicken the walls that normally stretch out after a heart attack and cause the heart to weaken. The thickened walls were also associated with more vigorous contraction.

"We found that the grafts didn't just survive in the rat hearts -- they also helped improve the function of the damaged heart," said Dr. Michael Laflamme, UW assistant professor of pathology and the lead author of the study. "That's very important, because one of the major problems for people suffering a myocardial infarction is that the heart is damaged and doesn't pump blood nearly as well. This sort of treatment could help the heart rebound from an infarction and retain more of its function afterwards."

The next step in studying stem-cell treatments for the heart is to conduct similar experiments in large animals, like pigs or sheep, while further refining the treatment in rats. Early human clinical trials could begin in about two years, Murry said.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Cocktail Heart IMPROVE Tissue Treatment cardiac graft heart muscle

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>