Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human derived stem cells can repair rat hearts damaged by heart attack

28.08.2007
When human heart muscle cells derived from embryonic stem cells are implanted into a rat after a heart attack, they can help rebuild the animal's heart muscle and improve function of the organ, scientists report in the September issue of Nature Biotechnology.

The researchers also developed a new process that greatly improves how stem cells are turned into heart muscle cells and then survive after being implanted in the damaged rat heart. The findings suggest that stem-cell-based treatments might one day help people suffering from heart disease, the leading cause of death in most of the world.

The study was conducted by researchers at the University of Washington School of Medicine in Seattle and at Geron Corp. in Menlo Park, Calif. The scientists set out to tackle two of the main challenges to treating damaged hearts with stem cells: the creation of cardiac cells from embryonic stem cells, and the survival of those cells once they are implanted in a damaged heart.

"Past attempts at treating infarcted hearts with stem cells have shown promise, but they have really been hampered by these challenges," explained Dr. Chuck Murry, director of the Center for Cardiovascular Biology in the UW Institute for Stem Cell and Regenerative Medicine, and corresponding author on the study. "This method we developed goes a long way towards solving both of those problems. We got stem cells to differentiate into mostly cardiac muscle cells, and then got those cardiac cells to survive and thrive in the damaged rat heart."

Embryonic stem cells can differentiate, or turn into, any type of cell found in the body. But researchers had struggled to get stem cells to differentiate into just cardiomyocytes, or heart muscle cells -- most previous efforts resulted in cell preparations in which only a fraction of 1 percent of the differentiated cells were cardiac muscle cells. By treating the stem cells with two growth factors, or growth-encouraging proteins, and then purifying the cells, they were able to turn about 90 percent of stem cells into cardiomyocytes.

The researchers dealt with the other big challenge of stem cell death by implanting the cells along with a cocktail of compounds aimed at helping them grow. The cocktail included a growth "matrix"-- a sort of scaffolding for the cells to latch on to as they grow -- and drugs that block processes related to cell death. When using the pro-growth cocktail, the success rate of heart muscle grafts improved drastically: 100 percent of rat hearts showed successful tissue grafts, compared to only 18 percent in grafts without the cocktail.

"The problem of cell death is pretty common in stem-cell treatments," Murry explained. "When we try to regenerate with liquid tissues, like blood or bone marrow, we're pretty good at it, but we haven't been very successful with solid tissues like skeletal muscle, brain tissue, or heart muscle. This is one of the most successful attempts so far using cells to repair solid tissues -- every one of the treated hearts had a well-developed tissue graft."

When the researchers followed up on the stem-cell treatment by taking images of the rat hearts, they found that the grafts helped thicken the walls that normally stretch out after a heart attack and cause the heart to weaken. The thickened walls were also associated with more vigorous contraction.

"We found that the grafts didn't just survive in the rat hearts -- they also helped improve the function of the damaged heart," said Dr. Michael Laflamme, UW assistant professor of pathology and the lead author of the study. "That's very important, because one of the major problems for people suffering a myocardial infarction is that the heart is damaged and doesn't pump blood nearly as well. This sort of treatment could help the heart rebound from an infarction and retain more of its function afterwards."

The next step in studying stem-cell treatments for the heart is to conduct similar experiments in large animals, like pigs or sheep, while further refining the treatment in rats. Early human clinical trials could begin in about two years, Murry said.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Cocktail Heart IMPROVE Tissue Treatment cardiac graft heart muscle

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>