Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes in the tailoring of barley malt properties

27.08.2007
Research Scientist Arja Laitila from VTT Technical Research Centre of Finland has investigated the impacts of bacterial and fungal communities on barley germination and on malt properties in her PhD thesis work. She will defend her thesis "Microbes in the tailoring of barley malt properties” at the University of Helsinki on 31 August 2007.

Microbes – bacteria, yeasts and filamentous fungi - have a decisive role in the barley-malt-beer chain. Microbes greatly influence the malting and brewing performance as well as the quality of malt and beer. A major goal of the dissertation was to study the relationships between microbial communities and germinating grains during malting.

Laitila’s research revealed that by modifying the microbial populations during malting, the brewing efficiency of malt can be notably improved. Well-characterized lactic acid bacteria and yeasts provide a natural way for achieving safe and balanced microbial communities in the malting ecosystem. She showed that the malting ecosystem is a dynamic process, exhibiting continuous change. The microbial communities consisting of various types of bacteria, yeasts and filamentous fungi form complex biofilms in barley tissues and are well-protected. Inhibition of one microbial population within the complex ecosystem leads to an increase of non-suppressed populations, which must be taken into account because a shift in microbial community dynamics may be undesirable. Laitila found some new microbial species in the malting ecosystem.

Suppression of Gram-negative bacteria during steeping proved to be advantageous for grain germination and malt brewhouse performance. Fungal communities including both filamentous fungi and yeasts significantly contribute to the production of microbial b-glucanases and xylanases, and are also involved in proteolysis. Well-characterized lactic acid bacteria (Lactobacillus plantarum VTT E-78076 and Pediococcus pentosaceus VTT E-90390) proved to be effective way in balancing the microbial communities in malting. Furthermore, they have positive effects on malt characteristics and they improve wort separation.

Previously the significance of yeasts in the malting ecosystem has been largely underestimated. This study showed that yeast community is an important part of the industrial malting ecosystem. Yeasts produced extracellular hydrolytic enzymes with a potentially positive contribution to malt processability. Furthermore, several yeasts showed strong antagonistic activity against field and storage moulds. Addition of a selected yeast culture (Pichia anomala VTT C-04565) into steeping restricted Fusarium growth and hydrophobin production and thus prevented beer gushing. Addition of Pichia anomala into steeping water tended to retard wort filtration, but the filtration was improved when the yeast culture was combined with Lactobacillus plantarum E76. The combination of different microbial cultures offers a possibility to use different properties, thus making the system more robust.

According to Arja Laitila new improved understanding of complex microbial communities and their role in malting enables a more controlled process management and the production of high quality malt with tailored properties.

Further information:
VTT Technical Research Centre of Finland
Research Scientist Arja Laitila, tel. +358 20 722 7146
Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Arja Laitila | VTT
Further information:
http://www.vtt.fi/?lang=en
http://www.vtt.fi/uutta/2007/27082007Laitila_vaitos.jsp?lang=en

Further reports about: Laitila barley ecosystem malting microbes microbial microbial communities properties

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>