Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes in the tailoring of barley malt properties

27.08.2007
Research Scientist Arja Laitila from VTT Technical Research Centre of Finland has investigated the impacts of bacterial and fungal communities on barley germination and on malt properties in her PhD thesis work. She will defend her thesis "Microbes in the tailoring of barley malt properties” at the University of Helsinki on 31 August 2007.

Microbes – bacteria, yeasts and filamentous fungi - have a decisive role in the barley-malt-beer chain. Microbes greatly influence the malting and brewing performance as well as the quality of malt and beer. A major goal of the dissertation was to study the relationships between microbial communities and germinating grains during malting.

Laitila’s research revealed that by modifying the microbial populations during malting, the brewing efficiency of malt can be notably improved. Well-characterized lactic acid bacteria and yeasts provide a natural way for achieving safe and balanced microbial communities in the malting ecosystem. She showed that the malting ecosystem is a dynamic process, exhibiting continuous change. The microbial communities consisting of various types of bacteria, yeasts and filamentous fungi form complex biofilms in barley tissues and are well-protected. Inhibition of one microbial population within the complex ecosystem leads to an increase of non-suppressed populations, which must be taken into account because a shift in microbial community dynamics may be undesirable. Laitila found some new microbial species in the malting ecosystem.

Suppression of Gram-negative bacteria during steeping proved to be advantageous for grain germination and malt brewhouse performance. Fungal communities including both filamentous fungi and yeasts significantly contribute to the production of microbial b-glucanases and xylanases, and are also involved in proteolysis. Well-characterized lactic acid bacteria (Lactobacillus plantarum VTT E-78076 and Pediococcus pentosaceus VTT E-90390) proved to be effective way in balancing the microbial communities in malting. Furthermore, they have positive effects on malt characteristics and they improve wort separation.

Previously the significance of yeasts in the malting ecosystem has been largely underestimated. This study showed that yeast community is an important part of the industrial malting ecosystem. Yeasts produced extracellular hydrolytic enzymes with a potentially positive contribution to malt processability. Furthermore, several yeasts showed strong antagonistic activity against field and storage moulds. Addition of a selected yeast culture (Pichia anomala VTT C-04565) into steeping restricted Fusarium growth and hydrophobin production and thus prevented beer gushing. Addition of Pichia anomala into steeping water tended to retard wort filtration, but the filtration was improved when the yeast culture was combined with Lactobacillus plantarum E76. The combination of different microbial cultures offers a possibility to use different properties, thus making the system more robust.

According to Arja Laitila new improved understanding of complex microbial communities and their role in malting enables a more controlled process management and the production of high quality malt with tailored properties.

Further information:
VTT Technical Research Centre of Finland
Research Scientist Arja Laitila, tel. +358 20 722 7146
Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Arja Laitila | VTT
Further information:
http://www.vtt.fi/?lang=en
http://www.vtt.fi/uutta/2007/27082007Laitila_vaitos.jsp?lang=en

Further reports about: Laitila barley ecosystem malting microbes microbial microbial communities properties

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>