Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasty bacteria need sunlight to do their worst

27.08.2007
Certain types of bacteria have sunlight-sensing molecules similar to those found in plants, according to a new study. Surprisingly, at least one species—responsible for causing the flu-like disorder Brucellosis—needs light to maximize its virulence. The work suggests an entirely new model for bacterial virulence based on light sensitivity.

The paper was authored by an international team* of collaborators including Trevor Swartz, lead author who was a former postdoctoral and visiting investigator at Carnegie’s Department of Plant Biology at the time of the study, and Winslow Briggs and Tong-Seung Tseng currently at the department. The research appears in the August 24 issue of the journal Science. It is the first detailed study into the function of plant-like light-sensing molecules in bacteria.

“The central message is that many bacteria have signaling proteins that contain the same light-absorbing domain as those found in the higher plants,” Briggs explains. “One of these is a vicious pathogen called Brucella. A species of Brucella is a serious pathogen of cattle that causes abortion of calves, and another species is a nasty pathogen of humans.”

The bacterial sensors are closely related to phototropins—the light receptor molecules that cause a plant to grow toward a light source. They share a protein sequence called a LOV (pronounced “love”) domain, so named because it can detect light, oxygen, and/or voltage. Briggs and his colleagues were the first to discover and describe plant LOV domains in 1998.

... more about:
»Brucella »Domain »Kinase »LOV »Swartz »bacterial »virulence

LOV-domain proteins have been found in more than 100 different bacteria. For the purposes of this study, the researchers narrowed the field to a handful of candidates with well-known LOV sequences that closely resemble those in plants. They eventually settled on four species: Brucella melitensis, Brucella abortus, Erythrobacter litoralis and Pseudomonas syringae.

In the case of B. abortus, and possibly others, the presence of a LOV domain is more than mere coincidence. When the researchers disabled the LOV-domain protein gene in this species, its virulence—measured as the ability to reproduce efficiently enough to cause disease—dropped to less than 10% of normal, “wild-type” bacteria.

In a simple experiment involving two layers of light-blocking aluminum foil, they achieved a similar drop in virulence, demonstrating that B. abortus depends on sunlight to do its dirty work.

“Brucella has been extensively studied for years because of its threat to livestock and the effect it has on our food supply—one of the key reasons we pasteurize milk is to prevent infection by Brucella,” explained Swartz. “But no one has previously demonstrated any type of light response in Brucella’s lifecycle. This is an exciting result that could possibly provide for a novel therapeutic avenue to treat and prevent infection.”

“People studying non-photosynthetic bacteria, whether the bugs are pathogenic or not, pay no attention to light conditions and are completely unaware that light might play some essential role in their physiology,” Briggs added.

When it is in the dark, a LOV domain uses weak chemical bonds to hold onto a small molecular group known as a chromophore. When it absorbs light, however, the LOV domain temporarily tightens its grip on the chromophore by forming a more stable bond. This reaction is essentially a biochemical switch, and when the light source is blocked or removed, the LOV domain relaxes its grip on the chromophore once again. Activated LOV domains can switch on yet another signaling molecule, known as a kinase, forming a coupled biochemical pathway referred to as a "two-component system."

The function of LOV proteins is fairly well documented in plants. Although researchers had previously documented LOV proteins in bacteria, Briggs, Tseng, Swartz, and their colleagues are the first to examine their function in detail. They found that bacterial LOV domains activate a common signaling pathway that begins with a specific type of kinase known as histidine kinase.

“Bacteria have a large collection of these so-called histidine kinases that are activated by nutrients such as sugar and amino acids, or toxic substances,” Briggs said. “Our work is the first ever to demonstrate a light-activated histidine kinase in a bacterium and demonstrate that it plays an essential role in bacterial virulence.”

*In addition to Briggs, Tseng, and Swartz, co-authors on the paper are: Marcus A. Frederickson and Roberto A. Bogomolni of the University of California, Santa Cruz; Gastón Paris and Fernando A. Goldbaum of the Fundacion Instituto Leloir, CONICET, Buenos Aires, Argentina; Diego J. Comerci and Rodolfo A. Ugalde of the Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CONICET, San Martín, Argentina; Gireesh Rajashekara of the University of Wisconsin and Ohio State University; Jung-Gun Kim and Mary Beth Mudgett of Stanford University; and Gary A. Splitter of the University of Wisconsin.

**Swartz initiated the study while a research faculty member at the University of California, Santa Cruz; he is currently at Genentech, Inc.

This research was funded by the National Science Foundation, the National Institutes of Health, the US Department of Agriculture, the Howard Hughes Medical Institute, the Binational Agricultural Research and Development Fund, and the Agencia Nacional de Promoción Científica y Tecnológica (Argentina).

The Carnegie Institution of Washington (www.carnegieinstitution.org), a private nonprofit organization, has been a pioneering force in basic scientific research since 1902. It has six research departments: the Geophysical Laboratory and the Department of Terrestrial Magnetism, both located in Washington, D.C.; The Observatories, in Pasadena, California, and Chile; the Department of Plant Biology and the Department of Global Ecology, in Stanford, California; and the Department of Embryology, in Baltimore, Maryland.

Winslow Briggs | EurekAlert!
Further information:
http://www.stanford.edu
http://www.carnegieinstitution.org

Further reports about: Brucella Domain Kinase LOV Swartz bacterial virulence

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>