Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasty bacteria need sunlight to do their worst

27.08.2007
Certain types of bacteria have sunlight-sensing molecules similar to those found in plants, according to a new study. Surprisingly, at least one species—responsible for causing the flu-like disorder Brucellosis—needs light to maximize its virulence. The work suggests an entirely new model for bacterial virulence based on light sensitivity.

The paper was authored by an international team* of collaborators including Trevor Swartz, lead author who was a former postdoctoral and visiting investigator at Carnegie’s Department of Plant Biology at the time of the study, and Winslow Briggs and Tong-Seung Tseng currently at the department. The research appears in the August 24 issue of the journal Science. It is the first detailed study into the function of plant-like light-sensing molecules in bacteria.

“The central message is that many bacteria have signaling proteins that contain the same light-absorbing domain as those found in the higher plants,” Briggs explains. “One of these is a vicious pathogen called Brucella. A species of Brucella is a serious pathogen of cattle that causes abortion of calves, and another species is a nasty pathogen of humans.”

The bacterial sensors are closely related to phototropins—the light receptor molecules that cause a plant to grow toward a light source. They share a protein sequence called a LOV (pronounced “love”) domain, so named because it can detect light, oxygen, and/or voltage. Briggs and his colleagues were the first to discover and describe plant LOV domains in 1998.

... more about:
»Brucella »Domain »Kinase »LOV »Swartz »bacterial »virulence

LOV-domain proteins have been found in more than 100 different bacteria. For the purposes of this study, the researchers narrowed the field to a handful of candidates with well-known LOV sequences that closely resemble those in plants. They eventually settled on four species: Brucella melitensis, Brucella abortus, Erythrobacter litoralis and Pseudomonas syringae.

In the case of B. abortus, and possibly others, the presence of a LOV domain is more than mere coincidence. When the researchers disabled the LOV-domain protein gene in this species, its virulence—measured as the ability to reproduce efficiently enough to cause disease—dropped to less than 10% of normal, “wild-type” bacteria.

In a simple experiment involving two layers of light-blocking aluminum foil, they achieved a similar drop in virulence, demonstrating that B. abortus depends on sunlight to do its dirty work.

“Brucella has been extensively studied for years because of its threat to livestock and the effect it has on our food supply—one of the key reasons we pasteurize milk is to prevent infection by Brucella,” explained Swartz. “But no one has previously demonstrated any type of light response in Brucella’s lifecycle. This is an exciting result that could possibly provide for a novel therapeutic avenue to treat and prevent infection.”

“People studying non-photosynthetic bacteria, whether the bugs are pathogenic or not, pay no attention to light conditions and are completely unaware that light might play some essential role in their physiology,” Briggs added.

When it is in the dark, a LOV domain uses weak chemical bonds to hold onto a small molecular group known as a chromophore. When it absorbs light, however, the LOV domain temporarily tightens its grip on the chromophore by forming a more stable bond. This reaction is essentially a biochemical switch, and when the light source is blocked or removed, the LOV domain relaxes its grip on the chromophore once again. Activated LOV domains can switch on yet another signaling molecule, known as a kinase, forming a coupled biochemical pathway referred to as a "two-component system."

The function of LOV proteins is fairly well documented in plants. Although researchers had previously documented LOV proteins in bacteria, Briggs, Tseng, Swartz, and their colleagues are the first to examine their function in detail. They found that bacterial LOV domains activate a common signaling pathway that begins with a specific type of kinase known as histidine kinase.

“Bacteria have a large collection of these so-called histidine kinases that are activated by nutrients such as sugar and amino acids, or toxic substances,” Briggs said. “Our work is the first ever to demonstrate a light-activated histidine kinase in a bacterium and demonstrate that it plays an essential role in bacterial virulence.”

*In addition to Briggs, Tseng, and Swartz, co-authors on the paper are: Marcus A. Frederickson and Roberto A. Bogomolni of the University of California, Santa Cruz; Gastón Paris and Fernando A. Goldbaum of the Fundacion Instituto Leloir, CONICET, Buenos Aires, Argentina; Diego J. Comerci and Rodolfo A. Ugalde of the Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CONICET, San Martín, Argentina; Gireesh Rajashekara of the University of Wisconsin and Ohio State University; Jung-Gun Kim and Mary Beth Mudgett of Stanford University; and Gary A. Splitter of the University of Wisconsin.

**Swartz initiated the study while a research faculty member at the University of California, Santa Cruz; he is currently at Genentech, Inc.

This research was funded by the National Science Foundation, the National Institutes of Health, the US Department of Agriculture, the Howard Hughes Medical Institute, the Binational Agricultural Research and Development Fund, and the Agencia Nacional de Promoción Científica y Tecnológica (Argentina).

The Carnegie Institution of Washington (www.carnegieinstitution.org), a private nonprofit organization, has been a pioneering force in basic scientific research since 1902. It has six research departments: the Geophysical Laboratory and the Department of Terrestrial Magnetism, both located in Washington, D.C.; The Observatories, in Pasadena, California, and Chile; the Department of Plant Biology and the Department of Global Ecology, in Stanford, California; and the Department of Embryology, in Baltimore, Maryland.

Winslow Briggs | EurekAlert!
Further information:
http://www.stanford.edu
http://www.carnegieinstitution.org

Further reports about: Brucella Domain Kinase LOV Swartz bacterial virulence

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>