Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotube formation: researchers learn to control the dimensions of metal oxide nanotubes

27.08.2007
Moving beyond carbon nanotubes, researchers are developing insights into a remarkable class of tubular nanomaterials that can be produced in water with a high degree of control over their diameter and length. Based on metal oxides in combination with silicon and germanium, such single-walled inorganic nanotubes could be useful in a range of nanotechnology applications that require precise control over nanotube dimensions.

At the Georgia Institute of Technology, researchers are studying the formation of these metal oxide nanotubes to understand the key factors that drive the emergence of nanotubes with specific diameters and lengths from a “soup” of precursor chemicals dissolved in water. Their goal is to develop general guidelines for controlling nanotube diameter with sub-nanometer precision and nanotube length with precision of a few nanometers.

So far, the researchers have obtained encouraging results with a model system that produces aluminosilicogermanate (AlSiGeO) nanotubes. The research, which will be presented August 23rd at the 234th National Meeting of the American Chemical Society, could open the door for developing a more general set of chemical “rules” for dimensional control of nanotubes that could lead to a range of new applications for inorganic nanotubes and other nanometer-scale materials. The research has been sponsored by the American Chemical Society Petroleum Research Fund.

“We have shown that there is a clearly quantifiable molecular-level structural and thermodynamic basis for tuning the diameter of nanotubes,” said Sankar Nair, an assistant professor in Georgia Tech’s School of Chemical and Biomolecular Engineering. “We’re interested in developing the science of these materials to the point that we can manipulate their curvature, length and internal structure in a sophisticated way through inexpensive water-based chemistry under mild conditions.”

Using chemical reactions carried out in water at less than 100 degrees Celsius, Nair’s research team – which included graduate students Suchitra Konduri and Sanjoy Mukherjee – varied the germanium and silicon content during the nanotube synthesis and then quantitatively characterized the resulting nanotubes with a variety of analytical techniques to show a clear link between the nanotube composition and diameter.

Simultaneously, the group’s molecular dynamics calculations showed a strong correlation between the composition, diameter and internal energy of the material.

“There appear to be energy minima that favor or stabilize certain nanotube diameters because they have the lowest energy, and those stable diameters change with the composition of the material,” said Nair. “This shows that the nanotube dimensions are not just a fortuitous coincidence of the many synthesis parameters, but that there is an underlying thermodynamic basis arising from the subtle balance of interatomic forces within the material.”

Specifically, the molecular dynamics simulations – which are corroborated by the experiments – show that the variation of germanium and silicon content causes sheets of aluminum hydroxide to form nanotubes with diameters ranging from 1.5 to 4.8 nanometers and lengths of less than 100 nanometers. If that turns out to be a general principle applicable to other metal oxides, it could be used to dramatically expand the catalog of nanotube structures available.

Once the researchers fully understand the factors affecting the formation of nanotubes from aluminosilicogermanate materials, they hope to apply similar principles to other metal oxides. The ultimate goal will be an ability to predictably vary the dimensions of nanotubes – and potentially other useful nanostructures – employing different chemical process conditions across a broader range of metal oxide materials.

“One can get a large range of useful properties with metal oxide materials,” Nair noted. “Almost all metals form oxides and many of them form layered sheet-like oxides, so if one can coax them into nanotube form with dimensions comparable to single-walled carbon nanotubes, the range of useful properties would be great.”

Controlling the dimensions of nanostructures is critical because properties such as electronic band-gap depend strongly upon the dimensions. Dimension control has proven to be difficult in carbon nanotube fabrication processes, leading to an entire area of research focused on purifying nanotubes of specific dimensions from an initial mixture of different sizes.

“If we are able to produce single-walled nanotubes of specific and controllable diameter with inexpensive water-based chemistry, devices based on them would perform in a consistent and predictable manner,” Nair explained. “If we could synthesize the same nanotube structure with predictably different diameters and lengths, we can tune the properties like the band-gap across a wide range. We could even get a limited toolbox of materials to do many different things.”

Though the chemical reactions that produce the metal oxide nanotubes are complicated, they occur over a period of days at low temperatures and can be carried out with simple laboratory apparatus. That facilitates control over processing conditions and allows the researchers to track many different aspects of the reaction with a variety of characterization tools.

“There is a lot of complex chemistry that can be done in the aqueous phase, which motivated us to understand the processes by which metal ions dissolved in water organize themselves together with oxygen into specific nanotubular arrangements, perhaps aided by water and other species present in the solution,” Nair added.

The metal oxide nanotubes have properties very different from those of carbon nanotubes, which have been studied heavily since they were discovered in the 1990s. “For example, the materials that we are working with are much more hydrophilic than carbon and can load nearly 50 percent of their weight with water,” Nair explained. “There is a whole range of behavior in oxide nanotubes that we cannot explore with carbon-based materials.”

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: Carbon Control Nair Oxide Researchers chemical reaction diameter formation reaction useful

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>